Deployment Designs for Multi-Core
Real-Time Systems

Dissertation

zur Erlangung des Doktorgrades
der Naturwissenschaften
vorgelegt von
ERJOLA LALO
aus Corovodé, Albanien
genehmigt von der Fakultéat fiir Mathematik /Informatik und

Maschinenbau
der Technischen Universitiat Clausthal,

Tag der miindlichen Priifung

12. Oktober 2023

Bibliografische Information der Deutschen Nationalbibliothek:

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Na-
tionalbibliografie; detaillierte bibliografische Daten sind im Internet iiber http:/ /dnb.dnb.de
abrufbar.

Bibliographic information published by the Deutsche Nationalbibliothek:
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibli-
ografie; Detailed bibliographic data are available in the Internet at http://dnb.dnb.de.

Dissertation Technische Universitit Clausthal, 2023
D 104

Dekan

Prof. Dr. Jorg P. Miiller

Vorsitzender der Promotionskommission
Prof. Dr. Niels Neumann

Betreuer

Prof. Dr. Christian Siemers

Gutachter

Prof. Dr. Andreas Rausch

Prof. Dr. Jiirgen Mottok

Umschlagabbildung: davstudio - stock.adobe.com

1. Auflage 2024

© 2024 Universitdtsverlag, Regensburg
Leibnizstrafie 13, 93055 Regensburg
Umschlaggestaltung: typegerecht berlin
Hintere Umschlagabbildung: Erjola Lalo
Satz: Erjola Lalo

Druck: docupoint magdeburg

ISBN 978-3-86845-180-1
ISBN 978-3-86845-181-8 (PDF)
DOI https:/ /doi.org/10.61036 /3868451818

Alle Rechte vorbehalten. Ohne ausdriickliche Genehmigung des Verlags ist es nicht
gestattet, dieses Buch oder Teile daraus auf fototechnischem oder elektronischem Weg
zu vervielfaltigen.

Weitere Informationen zum Verlagsprogramm erhalten Sie unter:
www.universitdtsverlag-regensburg.de

Abstract

In modern embedded automotive systems, multi-core processors are used to provide
higher execution performance and more computing capacity. However, they influence
the way these systems are designed. Each change of the platform and application
software results in an effort required to ensure and validate the functional correctness
and timing requirements of these systems in a multi-core platform. For this reason,
the use of the Logical Execution Time (LET) paradigm is advantageous for multi-core
systems, as it satisfies these requirements by providing time and dataflow determinism,
thereby reducing the development cycle and the impact of the platform in the design
of such systems.

To integrate LET into these systems, special mechanisms are required to satisfy its
semantics. Therefore, this work focuses on buffering and scheduling techniques for
resource efficient integration of LET in automotive systems. A buffering mechanism
and an automatic schedule synthesis are proposed to guarantee functional correctness,
timing requirements, and LET semantics and to reduce the increased demands of
LET for memory and processor resources. A static and global buffering protocol is
proposed, which compared to lock-based protocols has plausible memory needs and
zero-communication overheads at the boundaries of LET intervals. The automatic
schedule synthesis considers the Operating System (OS) overheads such that scheduling
is optimized with respect to context-switching overheads caused by preemption.
Buffering implements most of the LET semantics, but it provides no guarantee that
tasks execute within their LET intervals. If scheduling is not designed to ensure that all
tasks execute within their LET intervals, then functional correctness and LET semantics
are violated. The manual design of a feasible schedule that satisfies the semantics
and additional requirements of the application is inefficient and requires a significant
amount of effort. Therefore, an automatic schedule generation approach for the Fixed-
Priority Scheduling (FPS) and Time-Triggered Scheduling (TTS) is proposed. FPS is the
widely used mechanism in the automotive domain because of its flexibility to handle
dynamic changes of highly event-driven applications. Recently, TTS has attracted
considerable attention in this domain to increase deterministic execution of tasks
and efficient planning of processor resources. Therefore, schedule synthesis of FPS
and TTS is provided to identify the efficiency, practicality, and resource optimization
abilities of each approach for LET systems.

To show the practicality of LET for industrial automotive systems, its integration into
the software architecture of the classic platform of AUTomotive Open System ARchitecture
(AUTOSAR) is described and a case study is conducted using a real world system.

Kurzfassung

In modernen eingebetteten Systemen des Automobilbereichs werden Mehrkernprozes-
soren eingesetzt, um schnellere Ausfiihrungsgeschwindigkeiten und hohere Rechenka-
pazititen zu bekommen. Sie beeinflussen jedoch die Art und Weise, wie solche
Systeme entworfen werden. Jedes Mal, wenn sich die Plattform oder die Anwen-
dungssoftware dndert, hat dies den Aufwand zur Folge der benétigt wird, um die
funktionale Korrektheit und die zeitlichen Anforderungen dieser Systeme in einer
Mehrkernplattform sicherzustellen und zu validieren. Abhilfe schafft die Verwendung
des Logical Execution Time (LET)-Paradigmas, da es Zeit- und Datenflussdeterminismus
bietet und dadurch den Entwicklungszyklus verkiirzt und den Einfluss der Plattform
auf den Entwurf solcher Systeme reduziert.

Fiir die Integration von LET in Automobilsysteme, sind spezielle Mechanismen er-
forderlich, um dessen Semantik zu erfiillen. So werden ein Puffermechanismus und
die automatische Synthese eines Schedulings vorgeschlagen, um die funktionale
Korrektheit, die zeitlichen Anforderungen und die LET-Semantik zu gewihrleisten
und die erhohten Anforderungen von LET an Speicher- und Prozessorressourcen
zu reduzieren. Das statische und globale Pufferprotokoll besitzt im Vergleich zu
Protokollen mit Zugriffssperren einen plausiblen Speicherbedarf und benétigt keinen
Mehraufwand durch Kommunikation an den Grenzen der LET-Intervalle. Die au-
tomatische Synthese des Schedulings beriicksichtigt das darunter liegende Betriebssys-
tems (OS), wodurch der Mehraufwand durch Kontextwechsel reduziert wird.

Die Pufferung realisiert den grofiten Teil der LET-Semantik, aber bietet keine Garantie
dafiir, dass Prozesse innerhalb ihrer LET-Intervalle ausgefiihrt werden. Denn fiir
eine funktionale Korrektheit wird ein entsprechend ausgelegtes Scheduling benotigt.
Der manuelle Entwurf eines realisierbaren Schedulings, der die Semantik und die
zusidtzlichen Anforderungen der Anwendung erfiillt, ist ineffizient und erfordert
einen erheblichen Aufwand. Daher wird ein automatischer Ansatz fiir das Fixed-
Priority Scheduling (FPS) und das Time-Triggered Scheduling (TTS) vorgestellt und deren
Effizienz, Praktikabilitdt und die Fahigkeiten zur Ressourcenoptimierung fiir LET-
Systeme ermittelt. FPS ist wegen seiner Flexibilitdt bei dynamischen Anderungen
von stark ereignisgesteuerten Anwendungen der weit verbreitetste Mechanismus
im Automobilbereich. Um die deterministische Ausfiihrung von Prozessen und die
effiziente Planung von Prozessorressourcen zu verbessern, hat TTS in diesem Bereich
in letzter Zeit erhebliche Aufmerksamkeit erregt.

Die Praxistauglichkeit von LET fiir industrielle Automobilsysteme wird schliefdlich
gezeigt, indem beschrieben wird, wie es sich in die Classic Plattform der AUTomotive
Open System ARchitecture (AUTOSAR) integrieren lasst und eine Fallstudie anhand
einer realen Anwendung durchgefiihrt wird.

To my family

Acknowledgements

This work was partially conducted during the OBZAS project (“Optimiertes Buffering
fiir Zeitgesteuerte Automobile Software”) funded by the Bavarian Research Founda-
tion and the ARAMIS II project (“Development of Processes, Tools, and Platforms
for Safety-Critical Multi-Core Systems”) funded by the German Federal Ministry for
Education and Research. I have been fortunate to be mentored and supported by a
number of brilliant people. Foremost, I would like to express my deepest gratitude to
my advisor Prof. Dr. Jiirgen Mottok for his consistent guidance, invaluable advice,
and the opportunity to enter the research world of embedded systems. I would like to
express my deepest appreciation to my supervisor Prof. Dr. Christian Siemers for the
supervision during my doctoral studies and for the opportunity to write this disserta-
tion in his research group at the Clausthal University of Technology. I am extremely
grateful for the inspiring discussions and his invaluable support. Furthermore, I
would like to thank Prof. Dr. Andreas Rausch for his constructive feedback.

I am extremely grateful to my industry advisor Dr. Andreas Sailer for his outstanding
encouragement, mentoring, and guidance during my research work. This endeavor
would not have been possible without his persistent support. I am grateful for the
opportunity to have worked with Dr. Eugene Yip during the OBZAS project. I am
particularly thankful for the joint experiences on scientific research and technical
discussions. I am deeply indebted to my Vector Informatik GmbH colleagues, who
contributed to the success of this dissertation, in particular to Philip Wagner, Christian
Schiitze, Raphael Weber, Michael Volk, Timo Schwendner, Manuel Strobel, Sascha
Sommer, and Dr. Werner Thumann. Many thanks also to my colleagues Dr. Marc
Weber, Marco Wierer, Katharina Engel, Erna Oklapi, Thomas Wilhelm, Daniel Wetzel,
and Tamilselvan Shanmugam for their support during my work in Vector. Special
thanks to my very good friend and colleague Arlinda Elmazi for her continuous
encouragement, invaluable technical discussions, and the review of my dissertation. I
could not have undertaken this journey without the support of my former colleagues
of Timing Architects GmbH Dr. Michael Deubzer, Prof. Dr. Martin Hobelsberger, and
Maximilian Rappl. I would like to express my sincere gratitude to my friends who
have made my life more enjoyable during my doctoral studies.

Finally, and most importantly, I would like to thank my wonderful parents, my
siblings, my uncle and my aunt who have always supported me and made possible
that I pursue university studies and develop professionally. Most of all, I thank my
husband, Rilion, who has inspired, supported, and encouraged me all these years,
despite the long hours and days of working on my doctoral studies. You, my parents,
my siblings, my uncle and my aunt are my best friends and mentors in life. I dedicate
this dissertation to all of you.

March 2023, Regensburg

Contents

Contents

1 | Introduction

1.1
1.2
1.3
1.4

Motivation e e e e
Objectives and Assumptions
Contributions
Outline e

2 | Fundamentals

21

2.2

2.3

Embedded Real-Time Systems
2.1.1 Hardware Architecture
2.1.2 Software Architecture
2.1.3 Real-Time Scheduling
AUTomotive Open System ARchitecture
22.1 Layered Software Architecture
222 Communication Paradigms
Deterministic Multi-Core Systems
2.3.1 Multi-CoreEffects
2.3.2 Timing and Dataflow Determinism.
2.3.3 The Logical Execution Time (LET)

3 | Inter-Task Communication Design

3.1
3.2

3.3

34

Introduction o Lo
Related Work and Problem Analysis
3.2.1 Data Stability and Integrity
3.22 Temporal Determinism
3.23 Summary of Related Work
Point-to-Point Protocol (PTP)
331 Overview
3.3.2 Consistency of Data Synchronizations
3.3.3 Jitters of Data Synchronizations
334 Run-timeOverheads
Static Buffering Protocol (SBP)

341 OVerview o e

o T [T G SOy

11

11
11
12
18
27
27
30
32
32
34
35

i | Contents

3.4.2 Buffering Algorithm, 69

343 BufferSize 78

344 Memory Optimizations 80

345 Run-timeOverheads 84

35 Evaluation 87
3.5.1 SyntheticBenchmarks 88

352 Industrial CaseStudy 97

353 Conclusions 100

4 | Scheduling Design 103
41 Introduction 103
42 Related Work and Problem Analysis 107
421 Time-Triggered Scheduling 107

422 Fixed-Priority Scheduling 112

43 System Representation 118
431 ApplicationModel o o Lo 118

432 OverheadsModel oL 125

4.4 Schedule Synthesis Approach 127
441 Methodology 127

442 Start and Preemption Delays 130

4.5 Time-Triggered Schedule Synthesis 135
45.1 Scheduling of Communication Tasks 137

452 Scheduling of Computation Tasks 144

4.6 Fixed-Priority Schedule Synthesis 153
4.6.1 Scheduling of Communication Tasks 155

4.6.2 Scheduling of ComputationTasks 158

47 BEvaluation 174
47.1 Configurations 175

472 PFeasibility oo 178

473 Resource Optimization. 184

474 Performance 187

475 Conclusions 192

5 | Realization in AUTOSAR Systems 195
5.1 Integration in Software Architecture 195
51.1 Methodology 195

512 Determinismof LET 197

Contents | i

5.2 Case Study: Antilock Braking System (ABS) 200
52.1 Configurations 202

522 Results 205

523 Conclusions L 208

6 | Conclusions and Future Work 211
6.1 Conclusions 211
6.2 FutureWork 213

A | Appendix 217
A.1 Evaluation of Inter-Task Communication Design 217
A.2 Evaluation of Scheduling Design 240
References 339
Acronyms 353
List of Figures 357
List of Tables 369

List of Algorithms 371

1 | Introduction

Embedded real-time systems are electronic processing units composed of software and
hardware components. They can be found in domains such as automotive, avionic,
and industrial automation. Their number is heavily growing and they are evolving to
more advanced and complex functionalities such as autonomous driving and auto-
mated flight control. These systems are characterized by non-functional requirements
such as timing, performance, robustness, safety, and reliability. These requirements
imply that these systems must deliver correct results on time and have a deterministic
execution flow and robust behavior in case of environmental disturbances.

Embedded real-time systems are divided into hard, firm, and soft real-time systems
based on the deadline requirements. Violations of deadlines in firm and soft systems
do not halt the system from functioning, but produced results are either discarded or
have a low degree of usability. Violations of deadlines in hard real-time systems can
cause catastrophic consequences. Therefore, these violations must be captured early in
the development phase. An example of an in-vehicle system where these requirements
are critical to ensuring passenger safety is the Electric Power Steering (EPS) system.
The response time of this system to an under- or over-steering situation determines if
the vehicle brakes and safely enters the lane on time [1]. Similarly, in airbag systems,
fatal consequences can occur in the event of a vehicle accident if the airbag is not
activated and opened on time. It is therefore imperative that such systems are of
high quality. Sophisticated design solutions are required to ensure that functional and
non-functional requirements are met, high performance is achieved, and development
costs are kept low.

1.1 Motivation

Modern real-time automotive systems consist of thousands of functions [2]. These
functions are highly interconnected, i.e., a large amount of data is exchanged between
them, and a strict execution order of these functions is required for the proper func-
tioning of the system. In addition, timing requirements such as data ages, deadlines,
and end-to-end delays are specified for the outputs produced by these functions to
ensure that the correct functionality is provided at the required time. Traditionally, the
dataflow between these functions and the timing requirements are guaranteed during
their integration to tasks. This process is highly complex because it is influenced not
only by the complexity of the application itself, but also by the platform on which it

2| Introduction

runs, such as the hardware and Operating System (OS). For example, scheduling is an
integral components of the OS that also determines if timing requirements and the
dataflow between functions of different tasks are fulfilled.

The technological expansion of automotive systems has shifted their development
towards high-performance multi-core processors [3]. These processors offer comput-
ing capacity for more advanced functionalities, e.g., needed by autonomous driving,
parking, and driving assistance systems. In addition to the increase in performance, a
major advantage of multi-core processors is that the parallel execution of functions
on different cores reduces the time required to deliver their outputs and end-to-end
delays. However, these benefits come at the expense of a further increase on complex-
ity of designing such systems. This is particularly challenging when integrating and
maintaining different software increments or with each platform change.

When developing multi-core systems, software integrators are faced with the chal-
lenge of defining which functions to execute in parallel on different cores, while
simultaneously ensuring that dataflow and timing requirements are met. Although
approaches of supporting such design are available [4], maintaining software and
platform changes is still a major challenge because most of these systems contain
legacy code and redeveloping legacy functions for multi-core is not convenient due to
the high development effort and costs. Furthermore, multi-core processors impose
multi-core effects that must be also controlled during the design and integration phases
of these systems. In these processors, multiple hardware components are shared
among parallel executing functions such as memories, cores, and buses. The parallel,
concurrent accesses to these resources cause delays and high inter-core communication
overheads. Sharing of these resources leads to possible data stability issues that arise
due to concurrent read and write operations to shared variables by functions running
in parallel on different cores. Furthermore, deadlocks can occur due to parallel ac-
cesses on shared semaphores, which cannot be resolved by the classical priority-based
resource protocols [5]. All these effects increase the response times of functions, the
correct functional execution of the system, and can degrade the overall performance if
not completely avoided or minimized. Therefore, changing the multi-core processor
model, reassigning a function to a different core, or adding new functions to the sys-
tem requires addressing all of the above challenges, which in turn increases the effort
and time to design and integrate these systems and verify their timing requirements
and functional correctness.

The Logical Execution Time (LET) paradigm [6] is an attractive approach to support the
development of multi-core automotive systems because it provides time and dataflow
determinism. LET defines for each task a logical execution time interval. Tasks read
sensor data or input data produced by other tasks at the beginning of their interval and
provide outputs to other tasks or actuators at the end of their interval. It shall be noted
that a task contains one or multiple functions. Therefore, reading input and providing
output data by a task means receiving and providing data by their respective functions.
In LET, tasks deliver their results exactly at the end of their respective LET intervals,

1.1 Motivation | 3

even if they complete their execution earlier than this time. In non-LET systems,
tasks deliver their outputs during or at the end of their execution. Hence, in this case
scheduling and allocation of tasks to cores defines when tasks deliver their outputs.
For instance, higher-priority tasks deliver their outputs faster than lower-priority
tasks. Furthermore, when tasks are executed in parallel on different cores, they deliver
their results faster than when they are executed sequentially on the same core. In
LET, changing of the platform, e.g., processor model, task-to-core allocation, and
scheduling of tasks does not impact the time when tasks deliver their outputs because
these tasks exchange data only at the boundaries of LET intervals. In this way, in LET,
the dataflow between tasks is deterministic and end-to-end delays have a constant
duration. In LET systems, the time of data exchanges between tasks is known and
predictable at design and target execution, regardless of the platform.

The time and dataflow determinism provided by LET simplifies the verification
process of the functional correctness and timing requirements of the system. LET
provides composability, i.e., parts of the application encapsulated in LET intervals
can be easily reused and integrated into new system increments without impacting
the dataflow between functions. The same applies also when the system is extended
with new functionalities. In LET, multi-core effects are controlled more efficiently
because concurrent accesses on the same data during task execution do not occur and
response times of tasks do not impact the dataflow and timing requirements of the
overall application, unless deadline violations occur. Hence, the described advantages
of LET significantly reduce the time and effort of developing automotive systems in
multi-core platforms.

The integration of the LET paradigm into automotive systems involves several design
aspects. This work focuses on two of the most important design aspects required
to integrate and satisfy LET semantics. LET assumes zero communication and zero
synchronization time for data exchange at the boundaries of LET intervals. This
assumption is unrealistic for automotive applications because their functions are
highly interconnected and a high amount of data is exchanged at the boundaries of
their task’s LET intervals. In such applications, LET has higher requirements regarding
processing time and memory. To preserve the semantics, additional memory capacity
is required to store the copies of data for all tasks. The data exchange operations take
a reasonable amount of time, which increases the overall system load. Furthermore,
tasks that execute beyond their LET intervals violate LET semantics and can cause
in certain situations incorrect functional behavior. Therefore, to guarantee timing
requirements, LET semantics, and to handle the increase of utilization, a feasible
task’s schedule must be defined. Scheduling must ensure that the execution of data
exchanges at the boundaries of LET intervals must occur uninterruptedly and must
not be delayed by other urgent tasks. This requirement is only fulfilled through
deterministic scheduling strategies and algorithms that synthesize at design time the
schedule of tasks considering the run-time of data exchange operations. The following
section describes these aspects in detail.

4 | Introduction
1.2 Objectives and Assumptions

The fundamental objective of this work is resource efficient integration of LET paradigm
into automotive multi-core systems. This objective is decomposed into several goals,
which are described together with their motivation in the following paragraphs.

[Goal 1] Guarantee of LET semantics—The LET paradigm was initially designed for
time-triggered aircraft systems [7]. To apply this paradigm in automotive systems,
a buffering protocol must be developed. Such a protocol defines how the data is
exchanged and synchronized at the boundaries of LET intervals. Although LET has a
well-defined concept of exchanging data between tasks, it bases on assumptions that
are not valid in practice for automotive applications. The assumptions of zero jitters
and communication time of exchanged data at the boundaries of LET intervals are
not true for standard lock-based buffering protocols such as the Point-to-Point Protocol
(PTP) [8, 9]. Therefore, this goal is to design an alternative buffering approach for
LET, such that the original communication semantics are guaranteed. This means that
in the proposed buffering protocol the data exchange occurs with zero jitters at the
boundaries of LET intervals and takes zero communication and synchronization time.

[Goal 2] Optimization of buffering load and timing of LET applications—A lock-
based buffering protocol such as PTP [9] causes a significant increase of the system’s
load and the response times of tasks. This occurs due to data exchanges and synchro-
nizations at the boundaries of LET intervals. The degree in which the load is increased
depends on the amount of data that is copied to local variables at the beginning of
LET intervals and the amount of data that is copied to global variables at the end
of LET intervals. In PTP, to guarantee that the copy operations occur atomically at
the boundaries of LET intervals, synchronization mechanisms are used, which, on
the other hand, increase further the system’s load. The additional load degrades the
execution performance and leads to a system composition where most of the processor
capacity is used to execute data flushes between memories and not for the actual
execution of the application functions. Furthermore, the extra load decreases the
possibility to find a feasible task schedule and increases the response times of tasks.
Therefore, this goal focuses on designing an alternative buffering protocol that reduces
the load caused by buffering operations and enables a more efficient scheduling of
tasks. Specifically, this goal focuses on a static, wait-free global buffering strategy that
reduces the buffering load by avoiding physical data exchanges and synchronizations
at the boundaries of LET intervals.

[Goal 3] Optimization of the memory capacity for LET applications—The integra-
tion of LET paradigm into automotive systems, through any buffering protocol, re-
quires additional memory capacity for storing the buffers added to preserve the LET

1.2 Objectives and Assumptions | 5

semantics. The memory demands of LET are protocol dependent and increase with
an unknown growth of application’s complexity. Although multi-core processors are
equipped with memories of adequate space, the PTP highly increases the memory
space to store all data elements because it requires approximately (Ng + Ny) * D
additional memory for every data element, where Nr and Ny are respectively the
number of reader and writer tasks and D is the data size of the data element. In a
global buffering strategy [10], less memory is required because the reduction of LET
intervals that overlap between LET tasks decreases the amount of buffer elements.
Therefore, this goal targets the minimization of buffer memory via a buffering strategy,
that is independent of the number of reader and writer LET tasks and that is sensitive
to timing parameters such as the period and the duration of LET intervals. More-
over, strategies that focus on reducing the amount of buffers based on application
characteristics and timing requirements are part of this goal.

[Goal 4] LET buffering for specific automotive systems characteristics—Despite the
increase of system’s load and high demands for memory capacity, PTP offers sev-
eral benefits. PTP is easier to integrate in existing applications due to its simplified
semantics. It handles at run-time the task-to-task communication independent of
task’s triggering pattern. Therefore, the focus of this goal is to identify application
characteristics and use cases for which PTP is more practical to use than the proposed
protocol. A comprehensive definition of PTP targeting the shortcomings of related
work are also part of this goal.

[Goal 5] Scheduling of LET tasks—The schedule of LET tasks must be feasible re-
gardless of the buffering protocol used to ensure LET semantics. To accomplish LET
semantics, tasks must finish their execution within the boundaries of their LET in-
tervals. If tasks execute beyond the end of their LET intervals, then outputs cannot
be provided on time and, hence, LET semantics and functional correctness are vio-
lated. Incorrect execution of LET tasks impacts not only the time when they finish
their execution, but also the correctness of the LET buffering. The data exchange
and synchronization at the boundaries of LET in PTP is handled by so-called com-
munication tasks. To provide a correct data exchange, the communication tasks must
be executed in a defined order and finish without interruptions by any other task.
Therefore, designing the scheduling of LET tasks during integration of LET paradigm
into automotive systems is a crucial step.

This goal targets the automatic schedule synthesis of Fixed-Priority Scheduling (FPS)
and Time-Triggered Scheduling (TTS) mechanisms to guarantee LET buffering correct-
ness and fulfill several requirements. Specifically, it targets automatic schedule table
generation of TTS and priority assignment of FPS. The FPS scheduling is a widely
used approach in automotive systems due to its flexibility to handle dynamic changes
and nondeterministic task arrival times of highly event-based applications. Compared
to FPS, the TTS [11] offers benefits such deterministic execution of LET tasks and the
ability to control overheads and better load distribution during the scheduling design.

6 | Introduction

This goal targets two different scheduling mechanisms to observe the advantages and
practicality of each approach for LET systems. Finally, an automated approach to
generate the schedule is intended to reduce the effort and complexity of scheduling
design during the development of LET systems.

[Goal 6] Optimization of LET task scheduling—The OS handles task activation
through a timer interrupt. The execution of the timer interrupt and of OS oper-
ations defined to activate, schedule, and terminate tasks affect the system’s total
utilization and timing requirements in two ways. Firstly, these operations take an
amount of execution time, which is an additional run-time in the system. Secondly, the
OS operations and the timer interrupt execute on a high priority level, which causes,
in the worst-case, high preemption and start time delays to active tasks. These delays
impact the response times of tasks and affect the end-to-end delays in general. Hence,
it is essential to consider them during schedule construction in order to fulfill timing
requirements under realistic conditions. Therefore, this goal targets these delays as
part of the schedule generation and validation.

Scheduling decisions increase in general the overall system’s load through the induced
preemption overheads caused by context-switching between tasks. A high amount of
preemptions decreases the execution performance of the system and leads to deadline
violations and to an utilization that exceeds the processor’s full potential. Therefore,
this goal is to construct an optimized schedule of tasks for TTS and FPS approaches,
considering task’s activation, preemption, and termination overheads. This work
focuses on minimizing the overall preemption overheads by reducing the number of
preemptions caused by higher-priority tasks and the timer interrupt, and addressing
the respective delays when defining the priorities and the start and end times of
tasks. The aim is to validate the schedulability of tasks taking into account these
overheads and delays during schedule construction, rather than through expensive
schedulability tests that cannot be efficiently integrated into optimization algorithms
and do not provide optimization capabilities.

A significant advantage of designing the schedule of tasks considering these overheads
and delays is to avoid to an extent possible differences of the task execution planned
at the design time and the one executed on the real target. In this way, unexpected
violations of timing requirements are avoided and the required resources to ensure a
feasible schedule are realistically planned.

This work is based on the following assumptions:

A system composed of periodic tasks that communicate with each other via shared
memory (global or local) under the LET semantics is considered. The distributed com-
munication is not considered but assumed that data shared between tasks executing
on other Electronic Control Unit (ECU)s is done such that the data is sent before or at
the end of producer task’s LET interval and received before or at the start of read of
consumer task’s LET interval, depending on whether this data uses LET semantics.
A-periodic and sporadic tasks are assumed to not execute on the same core as periodic
tasks. Communication between periodic LET tasks and other non-LET sporadic tasks

1.3 Contributions | 7

is not explicitly considered and evaluated. It is assumed that this communication
is done with other communication mechanisms and not via LET, and it is assumed
that the communication costs are part of the Worst-Case Execution Time (WCET) of
the tasks. It is assumed that data elements exchanged via LET are exchanged only
between periodic tasks. In buffer synthesis, it is assumed that tasks call functions with
unique names. In legacy systems, this is not the case, as different tasks call the same
functions, but at different levels of their call tree. Finally, this work considers a system
where the WCET is predictable and estimated considering as well multi-core effects.

1.3 Contributions

This work provides the following key contributions.

C1 Resource efficient buffering mechanism for LET systems — The proposed Static Buffer-
ing Protocol (SBP) [12] reduces communication overheads and improves execu-
tion performance by avoiding the physical data exchanges at the boundaries
of LET intervals. It reduces memory demands of LET by enforcing a global
buffering mechanism and by suppressing writes of unnecessary outputs and
of outputs that satisfy data age constraints. The SBP protocol was designed
and developed during the OBZAS research project (“Optimiertes Buffering fiir
Zeitgesteuerte Automobile Software”) funded by the Bavarian Research Foun-
dation [13]. The research activities regarding SBP were carried out equally by
the project partners. Therefore, SBP was published together in the paper [12].
A comprehensive definition of the PTP buffering approach as an alternative way
to integrate the LET paradigm into automotive systems considering specific ap-
plication characteristics is given. The detailed description in this work addresses
the shortcomings of PTP described in the related work. Moreover, advantages of
PTP are derived and its buffering performance is evaluated against the proposed
SBP. This contribution accomplishes Goal 1 - Goal 4.

C2 Resource efficient scheduling of LET systems — Approaches to automatically synthe-
size and optimize the schedule of LET tasks for TTS and FPS strategies are given.
The proposed automatic overhead-aware synthesis algorithms are designed to
fulfill simultaneously timing, performance, resource, and LET requirements.
They are designed to optimize the schedule, i.e., to minimize preemption over-
heads by reducing the number of preemptions. To handle the impact of start and
preemption delays, the schedule is constructed considering timer, terminate, and
context-switching overheads. Unlike related work, approaches are proposed to
validate the schedulability of tasks considering these overheads during schedule
generation, rather than through expensive schedulability tests that cannot be effi-
ciently integrated into optimization algorithms. This contribution accomplishes
Goal 5 and Goal 6. Parts of this contribution are published in [14, 15].

8 | Introduction

C3 Case studies conducted considering characteristics of industrial applications
and the extensibility of these applications with new functionalities are given.
Considering that the AUTomotive Open System ARchitecture (AUTOSAR) standard
is successfully used in automotive systems, part of this contribution is the
integration of the LET paradigm into AUTOSAR software architecture as a use
case to show the practicality of LET. In this way, real challenges in integrating
LET into highly event-driven classic AUTOSAR systems are identified. The
practicality of LET for automotive systems is demonstrated through a case study
with a real world Antilock Braking System (ABS) running on a multi-core ECU.
This contribution targets the feasibility of contributions targeting Goal 1 - Goal 6
in the industrial environment.

In this work, a tool that synthesizes buffering information of an automotive application
was developed to evaluate the memory consumption and the execution performance
of SBP and PTP. The TA.Simulation option of TA Tool Suite [16] was extended to
simulate the buffering behavior of SBP and PTP. Similarly, a tool was developed
to generate the schedule of LET tasks that use SBP and PTP buffering protocols to
exchange data. The tool constructs the schedule for each TTS and FPS scheduling
mechanism separately. In order to show the practicality of LET for industrial in-vehicle
application, the Runtime Environment (RTE) of an existing AUTOSAR OS is extended
to support LET buffering.

1.4 OQOutline

An overview of the key contributions addressed by each chapter is provided in Ta-
ble 1.1. The remainder of this work is structured as follows. Chapter 2 introduces the
fundamentals of real-time embedded systems, the software application requirements,
multi-core effects, the LET paradigm, and the AUTOSAR standard. Chapter 3 de-
scribes the integration and optimization strategies of LET in automotive applications
in terms of data exchange and determinism. It provides a comprehensive evaluation

[C1] [C2] [C3]

Chapter 1
Chapter 2
Chapter 3 v v
Chapter 4 v o/
Chapter 5 v v

Table 1.1: Overview of contributions targeted in each chapter.

1.4 Outline | 9

of the proposed strategies using models with characteristics of industrial applications.
The scheduling of LET tasks and optimizations in terms of scheduling overheads are
covered in Chapter 4. The schedule construction of two scheduling approaches and
their related work is described throughout the chapter. The comprehensive evaluation
of both approaches emphasizes the benefits and the degree in which the determinism
of LET is fulfilled by each scheduling technique. Chapter 5 describes the integration of
LET paradigm into the software architecture of classic AUTOSAR systems. The practi-
cality of LET in automotive applications is shown by conducting a case study using a
real world AUTOSAR in-vehicle application executing on a real platform. Chapter 6
concludes this work and outlines the future work.

| 11

2 | Fundamentals

This chapter describes the fundamentals of embedded real-time systems. An overview
of hardware and software platform of modern Electronic Control Unit (ECU)s is intro-
duced briefly. The chapter describes the impact that multi-core processors have on the
time and dataflow determinism, performance, and design of in-vehicle applications.
The fundamentals of the Logical Execution Time (LET) paradigm are described, as well
as the advantages LET brings to the development of in-vehicle applications. Finally,
the basic concepts of the classic AUTomotive Open System ARchitecture (AUTOSAR)
systems are introduced.

2.1 Embedded Real-Time Systems

An embedded real-time system is composed of the application software, the operating
system and the hardware components. The fundamentals of each component are
described throughout this chapter.

2.1.1 Hardware Architecture

Multi-core processors are a special kind of multiprocessors and consist of at least
two or more execution units, so-called cores, integrated in a single processor socket
and interconnected via crossbars or dedicated bus networks. They provide more
computation power than single-core processors through the parallel work of two or
more cores. The advent of multi-core is driven by the need of more computation power.
Increasing of the single-core processors frequency leads to more energy consumption
and decreases the longevity of the device. Therefore, in order to handle the increasing
need of computation power, multi-core processors are invented.

A multi-core processor has three classes of memory design. In distributed memory
architecture, each core has its own local memory. In shared memory architecture only
one global memory exists and it is accessed by all cores via a shared network. The
hybrid design is a combination of shared and distributed memory architecture. In
this architecture, all memories (local and global) are accessed by all cores, but with
dedicated crossbars. Hence, cores access their local memory with a faster crossbar
than the local memories of other cores or the global memory. In terms of processing
speed, the multi-core processors are classified in homogeneous and heterogeneous types.

12 | Fundamentals

In the first type, the cores have identical instruction sets. Whereas, the heterogeneous
processors have different types of instruction sets for cores. The multi-core design is
further classified by the way cores operate. In asymmetric multiprocessing (AMP),
cores run independently and in symmetric multiprocessing (SMP) it is the operating
system that arbitrates core operations. This work assumes that the multi-core processor
is either homogeneous or heterogeneous. Their impact is abstracted only in the Worst-
Case Execution Time (WCET) of all functions of the application software. This work
assumes that the accessing delays of local memories are lower when accessed by the
local core and higher when accessed by other cores. Similarly, the delays for accessing
shared memory is higher than accessing the local memory of the core. These delays
have an extensive impact on the communication run-time between functions of the
application software.

2.1.2 Software Architecture

The embedded application software describes a set of functionalities implemented by
several functions. Examples of these applications are Braking Assistance, Engine Con-
trol Management and Pedestrian Recognition applications that are found in modern
cars. Functions of the application software are mapped to different tasks. Tasks are
the schedulable units recognized by the Operating System (OS). They are executed
periodically, sporadically, or a-periodically. Periodic tasks are activated and executed
repeatedly every fixed “periodic” time. The arrival of sporadic and a-periodic tasks
is unpredictable and only known at run-time. For sporadic tasks their minimum
and maximum arrival time is known at design phase, which is used to evaluate their
impact on the execution of periodic tasks. This work focuses only on periodic tasks.

2.1.2.1 Safety Composition

Faulty behaviors of embedded systems occur due to hardware and software mal-
functions. In safety standards, safety integrity levels [17] are defined to indicate the
consequences caused by such failures. Safety requirements are specified and guar-
anteed at design and implementation via fault isolation and fault tolerance handling.
Fault isolation is ensured via partitioning of applications, such that critical parts of the
system remain unaffected by the hardware or software failure. Fault tolerance ensures
that failures are handled at run-time, such that software application, i.e., allocated in
the failed hardware, continues execution in a correct manner. Fault tolerance is em-
ployed by replicated functions running on multiple processors. Hence, the application
software is composed by several applications, each mapped to dedicated partition.
Partitions are a safety pattern, specified in ARINC - 653 [18] and ISO 26262 standards
[17], to isolate spatially and temporally critical applications and protect them against
faulty functions. Partitions have dedicated resources such as memory and processor
time. Spatial partitioning determines that functions of different partitions must not

2.1 Embedded Real-Time Systems | 13

interfere with each other in terms of memory (functions operate on memory regions
dedicated to the partition they belong). Temporal partitioning ensures that shared
resources, e.g., processor time are strictly adhered to a partition, and no interferences
occur. Each partition takes a dedicated time-slot during execution that is not shared
among other partitions. Partitioning protects critical parts of the application software.

In AUTOSAR OS [19], temporal partitions are implemented in the form of timing
protections. For instance, task overruns are ensured by the time budget concept of the
timing protection mechanism. A time budget is assigned to the execution time of
every task and if any task exceeds this budget the OS takes the necessary actions
(e.g., by forcibly terminating the task). In this work, a safe upper bound of WCET for
every task is assumed, which corresponds to the time budget. This work construct
the schedule of tasks under this assumption, but it does not consider the run-time
of OS to handle time budget violation. In typical safety systems, criticality levels are
assigned to tasks to indicate the consequences of failure to execute those tasks. For
instance, high-criticality (HI) tasks of an application should be free from interference
and any non-occurrence of these tasks leads to catastrophic consequences. The zero-
interference execution of high critical tasks must be as well guaranteed at schedule
construction. The constructed schedules typically go in the process of certification
and are certified only if task requirements are fulfilled. Schedules of low-critical tasks
do not require certification although these tasks must as well meet their deadline
requirements. In this work, safety is not explicitly addressed, but it is assumed that all
tasks must meet their deadlines regardless of their criticality.

Virtualization is an alternative method to ensure zero-interference between software
applications of different criticality levels. Hypervisors [20] isolate critical applications
in safety-critical OS and non-critical ones in other OS. All OSs run in the same virtual
machine, but each having dedicated resources.

2.1.2.2 Communication

Embedded functions are highly interconnected. They exchange data in different ways
such as for instance by means of shared memory or by means of messages. In the
shared memory method, tasks exchange data by reading and/or writing the same
data elements. These data elements are allocated to shared memory components, such
that they are accessed by all cores to which tasks are allocated for execution. Two
tasks exchange data if one task produces and the other consumes the same global
data element. The task that consumes the data is referred to as reader task and the one
that produces the data is referred to as writer task. Data protection, i.e, consistency
mechanisms [5, 21, 22] such as lock-based, lock-free and wait-free, are proposed to
avoid the read of unstable data due to concurrent read and write operations on data
elements shared among different tasks. Locks allow exclusive operating rights on data
elements. While a task accesses a shared data element, it holds the lock in order to

14 | Fundamentals

avoid concurrent accessing and guarantees that it is operating in a consistent value.
This approach can cause long blocking delays and can lead to deadlocks. The Priority
Ceiling Protocol (PCP) is used [23] to avoid deadlocks for tasks in single-core systems.
Lock-free approaches [24] are used to allow accesses on data elements without holding
a lock. At the end of the access, reader tasks check whether another task updated
concurrently the data element while consuming the data and retries until a stable
value is consumed. The number of retries can be unpredictable, but an upper bound
is defined in [24, 25] to estimate its impact in the WCET.

In wait-free methods, the readers do not wait for the writers to finish and the writers
are not blocked by the readers. Instead, different versions of the data are stored
in buffers for every data element. Reader tasks read the latest version of the data
from the respective buffer element. This approach has the disadvantage of requiring
more memory for buffer storage, but it ensures exclusive operations on data without
deadlocks or unnecessary retry delays. To reduce the memory required to store buffers,
buffer elements not consumed by any reader task are used to store new versions of
data produced by writer tasks.

Tasks executing in different ECUs, communicate via distributed bus in form of mes-
sages using CAN, FlexRay, or Ethernet protocols [26]. Distributed communication
distinguishes between Time-Triggered (TT) and Event-Triggered (ET) approaches of
transmitting the messages. In the time-triggered approach, e.g. with the FlexRay
protocol, the transmissions are specified in a schedule table in which time slots define
the time for sending messages. In the event-triggered approach, e.g. with the CAN
protocol, messages are arbitrated using a fixed priority assigned to each message. The
tasks of the different partitions communicate with each other either via inter-partition
communication or via a distributed bus. In general, the communication between
partitions of the same ECU happens via buffers, where the data is transferred by the
kernel OS from one partition to another. Only the kernel OS knows the memory ranges
accessed by both partitions and it is the OS performing this action. The drawback of
this approach is that buffer overruns might occur. Another method is the shared buffer
approach (buffer is located in shared memory), in which sender/receiver partitions
can read from or write to. This case is more efficient because the kernel is not involved.

This work focuses only on task communication based on shared memory approach
using the LET paradigm [7].Two LET communication protocols for data exchange
between tasks are described, the Static Buffering Protocol (SBP) and Point-to-Point
Protocol (PTP). Let S = {Ss|s € INT } denote the set of all global data elements in the
software application exchanged using SBP or PTP. Each data element has a primitive
type (e.g., Integer, Float, Boolean) or composite type (e.g., Array, Struct). This notation
of data elements is used throughout this work.

2.1 Embedded Real-Time Systems | 15

~. :
A 4

A

QO Jl]

7
Vij d; ; Time

AN

>AL A A
~
Q
:k
= v v

T;

Figure 2.1: Attributes and scheduling parameters of task T; its job J; ;. The first vertical black
arrow indicates the release time r; ; of job J; ; and the red arrow the absolute deadline d; ;. The
release time 7; ; is defined based the offset O; and period P;.

2.1.2.3 Tasks Composition

The embedded real-time system considered in this work consists of n € IN periodic
tasks T = {T3,..., Tn} and m € IN processing units, i.e., cores C = {Cy, ..., Cp }. Each
task T; € T is activated periodically at period P; € IN with an offset O; € IN, has
deadline D; € IN equal to the LET interval duration let; (Where D; < P;), and is
mapped for execution to any of the cores in C, where 1 < i < n. The WCET of T; is
defined as wcet;. Each task T; is instantiated to n; € IN number of jobs within duration
hp of the Hyper-Period (HP). The hp is calculated as the Least Common Multiple (LCM)

of periods of tasks hp = Iem({Py, Py,..., P, }) and n; = Pll)—p The HP defines the time
1

interval of identical repetition of the activation pattern of tasks. Let J; ; define the i
job of T;, where j € [1,n;]. Let rij and d; ; be the release time and the absolute deadline
of each job J; ; of each task T; € T, respectively, defined as

rij = O; + (] — 1) x P;, (2.1)

di,j =Tijt D;. (2.2)

The absolute deadline d; ; also corresponds to the end of the LET interval of job J; ;.
The above attributes of the task T* are shown in Figure 2.1.

Tasks are divided into different categories based on their deadlines and offsets. Tasks
with deadlines equal to their period (P; = D;) are referred to as tasks with implicit
deadlines. Tasks with deadlines less than the period (P; < D;) are referred to as tasks
with constrained deadlines and the ones with deadline greater than the period (P; > D;)
are referred to as tasks with arbitrary deadlines. Based on the offset, tasks are divided
into synchronous and asynchronous tasks. Synchronous tasks have all the same offsets
and asynchronous tasks have different ones.

16 | Fundamentals

2.1.2.4 Timers and Task Activation

In embedded microcontrollers, timers are special counter registers that measure the
progression of time. Their main purpose is activation of tasks or setting of events.
Timers are incremented at each processor cycle or at each prescaler register overflow.
Prescalers are dedicated registers that are used to measure higher values of timers.
When counter reaches its configured maximal value, it overflows and an interrupt is
released, referred to as timer interrupt. The timer interrupt is executed in the context
of the OS and checks if any task must be activated or if any event must be set. The
time required for the counter to overflow defines the period of the timer. Timer’s
period has a high impact on activation time of tasks. The timer interrupt causes task
activation delays, referred differently to as activation jitter, because of its period and
its run-time. Nevertheless, timers could be configured such that activation delays are
reduced. For example, the timer should have a period of 1ms in order to activate
every job of tasks T1,s (period 1 ms) and Ty,s (period 2ms). If the timer’s period is
configured 2 ms, then every second job of Ty, is not activated before the release of
the next job. If the timer’s period is configured 1.5 ms, then the maximum activation
jitter for both tasks is the run-time of timer interrupt plus 1.5ms.

In typical embedded multi-core microcontrollers, each core has its dedicated counter
that is used to activate tasks that run on that core. Two types of timers are defined
to activate tasks: the hardware and the software timer. Unlike the hardware timer,
the software timer must be incremented manually in the software. However, the
hardware timer is used as a baseline in the software timer too. A software timer can
be a periodic or a high-resolution timer.

Figure 2.2 shows an example of three tasks activated by a periodic timer. The period
of the timer is set to 4 ms, which defines that every 4 ms the timer interrupt Timer is
released to activate tasks. It checks for arrived events, which indicate a request to
activate tasks, and activates the requested tasks. Task Tj has a period of 4 ms and is
activated by the timer every 4 ms but with an insignificant activation jitter, defined
by the time difference between the red and black arrows, which is due to the point of
time the timer interrupt sets the task in active state during its execution. Task T; has a
period of 5ms and is activated by the timer irregularly, i.e., at a higher activation jitter
than of task Ty. This occurs because the 4 ms period of the timer does not harmonize
with the period of task T;. For instance, the activation of the second job of T1 happens
only by the third release of the timer interrupt between 8 ms — 9 ms (indicated by the
red vertical arrow). This causes a maximal activation jitter of 4ms for the second
job of task Tj. Similarly, task T is activated by a large activation jitter as in the case
of task T7. To avoid large activation jitters, the timer’s period must be configured
properly. For instance, in the example of Figure 2.2 a timer period of 1 ms would
activate tasks T7 and T, at correct times without major activation jitters. However,
this configuration has other drawbacks. Triggering the timer to often can cause high
interruption load, which on the other hand degrades the performance and can lead to
deadline violations of tasks. Hence, if the timer’s period is set to 1 ms, then tasks are

2.1 Embedded Real-Time Systems | 17

|
T s s O
TI ' > > —> .
|||||||||||l||||||||
A A
T, Tz’i T=’
Illllllllllllilllllll 4
0 10 20 t[ms]

Figure 2.2: Periodic Timer. Tasks Ty, T;, and T, are activated by the periodic timer interrupt
Timer. The period of Timer is set to 5ms. The vertical black arrows indicate the expected
activation times of tasks and timer interrupt. The red arrows indicate the actual activation
of tasks. The horizontal black arrows indicate the shift of activation of tasks. The solid blue
colored boxes indicate the execution of the timer interrupt. Activation jitters of tasks are
caused by the period and execution of Timer.

activated at correct points of time but with the drawback that no time is left for tasks
to execute because the processor is occupied mainly by the timer interrupt. Therefore,
finding the correct period of the timer in an application with non-harmonic periods is
not only challenging, but often a trade-off between lower activation jitters and higher
execution load caused by the timer.

To handle drawbacks and configuration challenges of periodic timers, the high-
resolution timers are defined in AUTOSAR [19] to activate tasks without major delays
and without causing high interruption load. The maximum value of the counter of
a high-resolution timer is reset every time the timer reaches its maximal value to a
value that might differ from the previous one. Therefore, these timers know the next
activation event of the task and the timer interrupt is triggered exactly at these times.
Figure 2.3 shows the example of tasks T, T7, and T; activated by the high-resolution
timer. The maximal value of the counter is assigned such that the timer interrupt is
triggered at times 0 ms, 5ms, 6 ms, 8 ms, 10ms, 12ms, 15ms, 16 ms and 20 ms, which
correspond to the planned activation times of tasks. The maximal activation delay
of 1 ms is unavoidable due to the run-time of the timer interrupt. High-resolution
timers reduce the high execution load caused by periodic timers in applications with
non-harmonic periodic tasks, but in practice do not enable high accuracy in task
activation and have a higher execution load per instance of the timer interrupt. This is
due to their internal algorithm for determining the next activation point.

Timer interrupts have a higher priority than computation tasks and can preempt
tasks during execution. These preemptions lead to preemption delays and context-
switching overheads, which affect execution performance of the system and task
response times. The impact of timers on tasks activation and scheduling is an essential
part of this work. Because high-resolution software timers cause fewer interruptions,

18 | Fundamentals

Figure 2.3: High-Resolution Timer. Tasks Ty, T;, and T, are activated by the high-resolution
software timer handler Timer. The activation of Timer is not based on a fixed period, but is
defined by setting the maximal value of the timer each time the timer overflows. The vertical
black arrows indicate the expected activation times of tasks and timer interrupt. The red
arrows indicate the actual activation of tasks. The horizontal black arrows indicate the shift of
activation of tasks. The solid blue colored boxes indicate the execution of the timer interrupt.
Activation jitters of tasks are caused only due to the execution of Timer.

shorter activation delays for non-harmonic periodic tasks, and lower execution load,
they are used to activate tasks of applications targeted in this work.

2.1.3 Real-Time Scheduling

Scheduling is the component of an embedded real-time OS that determines the exe-
cution of tasks on processing units. It has an enormous impact on satisfaction of the
real-time requirements. In multi-core systems, its definition is often associated with
allocation, that defines the assignment of tasks to cores or processors. The scheduling
algorithm defines standard rules that determine the execution order of jobs. The di-
rect outcome of a scheduling algorithm is a schedule, which consists of a list of jobs
with their respective order of execution. A schedule is valid if all the jobs meet their
deadlines. An optimal scheduling algorithm can schedule any feasible task set. A
task set is feasible if at least one valid schedule exists. Schedule feasibility is evaluated
through schedulability analysis which are constructed based on complex tests, so
called schedulability tests. They verify that for a scheduling algorithm and a given
task set a valid schedule is found. These tests are classified as sufficient, necessary and
exact [27]. Schedulability tests are often hard to construct as they consists of math-
ematical equations that denote the relation between several attributes of tasks and
the platform. They are often constructed based on Worst-Case Response Time (WCRT)
formulations. WCRT analysis construct worst-case bounds for response times of tasks,
but because they are pessimistic they do not represent the reality and are hard to
apply. Alternatively, simulation [16] is used to check schedule feasibility and deadline
violations. Although highly practical in multi-core case, verification using simulation

2.1 Embedded Real-Time Systems | 19

A
Core2 Tp |

A A . migration
Corel Ty | | | | |T Core1 T T
Corel T, T:l T:l T Corel T, T:l T:l T
f T { T T > f T f T T >
0 1 2 3 4 t[ms] 0 1 2 3 4 t[ms]
(a) Partitioned (b) Semi-Partitioned

Figure 2.4: Example of (a) partitioned and (b) semi-partitioned scheduling. The light green
box indicates the preemption time of a task. The gray colored boxes indicate the start delay.
The red arrow indicates a migration of the task to the other core. The black arrows indicate the
release of tasks.

is not constructive compared to WCRT analysis because they do not consider all
execution paths of the system.

2.1.3.1 Scheduling classification

The following paragraphs provide a summary of scheduling types categorized based
on various aspects.

Partitioned vs. Semi-partitioned—This category concerns the resource allocation of
tasks. In partitioned scheduling, tasks are assigned for execution to a core and all its
jobs execute only on this core. Semi-partitioned is a derivative of partitioned scheduling.
It allows a subset of tasks to migrate for execution onto other cores. Migration refers
in this context to the reassignment of a task to a core that is different to the initially
assigned one. The migration of a task occurs either before starting its execution on the
initially assigned core or after it is preempted and resumes on the other core. The aim
of migration is to improve schedulability and to balance the load between cores.

An example of two tasks Tp and T that are scheduled using partitioned and semi-
partitioned scheduling is shown in Figure 2.4. The execution of Ty and T; based on
partitioned scheduling is shown in Figure 2.4a. Task Tj is allocated on the same
core as Tp and has the highest priority. It preempts task Ty at time 2ms. After
termination of Ty, task Ty resumes on the same core and continues execution until
termination. Figure 2.4b shows the execution of tasks Ty and T; considering semi-
partitioned scheduling. Task Ty resumes on Core 2 after its preemption at time 2 ms by
task T7. Although the practicality of semi-partitioned scheduling has been evaluated
[28, 29], it must be used occasionally to keep migration overhead low. Compared
to semi-partitioned, the partitioned scheduling lacks sufficient utilization of cores
and it does not scale well with the increase of the number of cores. In practice, it is

20 | Fundamentals

Queue Cluster 1
Queue Core 1 Global Queue Queue Cluster 2

Quecon2 I TTT T O
Corel Tp Corel Ty
cocr 7 i ! cwrn 1 wonfl o
Core2 T, T_l | T_l T Core 1 T, T_l ?'"igm{io"T Core3 T,
1 1 T
0 1 2 3

T T T T T T 1 T T
4 t[ms] 0 1 2 3 4 t[ms] 0 1 2 3 4 t[ms]

(a) Local (b) Global (c) Clustered

Figure 2.5: Example of (a) local, (b) global, and (c) clustered scheduling. The green colored
boxes indicate the execution of tasks.

advised that a software application is designed in such a way that tasks are divided
into multiple tasks and scheduled via partitioned scheduling [30] and are allocated
to different cores at design time. This avoids migration overheads and increases the
predictability. The partitioned scheduling is the widely used in industrial automotive
systems and is the approach used in this work to allocate tasks to cores.

Local vs. Global vs. Clustered—In local scheduling, every core has its own scheduler.
Each task, mapped for execution to a core, is scheduled by the local scheduler of
the core. In global scheduling, tasks are scheduled by one scheduler and all active
jobs are stored in a global queue. Example of global scheduling algorithms are Pfair,
EDZL, LLF, Global-EDEF. The Pfair scheduling algorithm [31] is based on fairness and
is classified as fluid scheduling strategy. Tasks are executed fairly, i.e., each task takes
an equal quantum of execution time. This algorithm is optimal in multiprocessors
for periodic tasks with implicit deadlines and performs well in up to 100 % load.
However, it is impractical due to high migration overheads.

Optimal schedulers, successors to Pfair, are PF, PD, PD2, ERFair, and PFair staggered
model. The EDZL (Earliest Deadline until Zero Laxity) [32] assigns the highest priority
to tasks with zero laxity. Tasks are not preempted during execution. Similarly, LLF
(Least Laxity First) assigns priorities based on laxity. Laxity defines the time difference
between the deadline and the WCET of a task. LLF is optimal for uniprocessor case
and performs well in terms of schedulability, but again suffers from high migration
overheads. Global-EDF is not optimal for multiprocessors [33]. Clustered scheduling is
a hybrid approach between local and global scheduling. It consists of clustered sets of
processors, where tasks are scheduled globally within a cluster.

An example of local, global, and clustered scheduling is shown in Figure 2.5. The
application consists of tasks Tp and T;. Figure 2.5a shows their execution based on
the schedule defined by the local scheduling. In this example, tasks are allocated for
execution on different cores. Task Tj is scheduled by the local scheduler of Core 1 and
T; by the local scheduler of Core 2. Each scheduler has its own queue for storing ready
tasks. Figure 2.5b shows the execution of Ty and T; defined by a global scheduler,
which handles allocation of tasks to cores by using a global queue to store ready tasks.

2.1 Embedded Real-Time Systems | 21

Core 1 Toh h T Corel To

[

Core 1 T, T Core 1 T;

[A

Y
i
A
Core 1l T, | | —I:" T . Core 1l T,
I 7

T j
0 1 2 3 4 t[ms]

i
h !

2 4 t[ms]

o—:|-> H: |:|=

(a) Static (b) Dynamic

Figure 2.6: Example of (a) static and (b) dynamic scheduling. The green colored boxes indicate
the execution of tasks. The gray colored boxes indicate the start delay. The light green box
indicates the preemption time of a task.

The allocation of tasks to cores differs based on the available cores. For instance, the
second job of task T is activated at time 2ms and is assigned by the global scheduler
to execute on Core 2, instead of Core 1, in which the first job has executed. Figure 2.5¢
shows an example of tasks Tp, T;, and T,. Tasks Ty and T; are scheduled by the
clustered scheduling, named Cluster 1, which uses global scheduler to allocate and
execute tasks on Core 1 and Core 2. Task T is scheduled by the clustered scheduling,
named Cluster 2, which is a local scheduler to allocate tasks to Core 3.

Static vs. Dynamic—A schedule is determined either completely before the system
runs (static) or at run-time (dynamic). In multiprocessor systems, the static scheduling
defines the fixed allocation of tasks to cores and the fixed order of execution of
jobs at design time. The schedule is not changed during the run-time. This design
is generally more efficient at run-time but not very flexible, because the complete
schedule must be known before system’s operation. In high load conditions, the low
priority tasks could suffer from deadline violations due to strict partitioned design,
i.e., the allocation of jobs to cores remains unchanged at run-time. Fixed-priority and
fixed-job scheduling are static, in which a fixed priority is assigned respectively to tasks
and jobs. Example algorithms are Rate Monotonic (RM) and Deadline Monotonic (DM).
RM assigns priorities based on the rule “smallest period - highest priority” and DM
based on “earliest deadline - highest priority”.

Dynamic scheduling constructs the schedule at run-time and can change it dynamically.
For instance, priorities are assigned at run-time via RM or DM heuristics. Compared
to static scheduling, they are more flexible and resource efficient. But in hard real-time
systems they add unpredictable behavior and are hard to verify. Additionally, they
are characterized by a high number of task/job migrations that lead to increase of
the utilization and deadline violations. Migration overhead impacts the performance,
making this scheduling approach impractical.

An example of static and dynamic scheduling is shown in Figure 2.6. The application
consists of tasks Tp and T7, which execute on the same core. Figure 2.6a shows their

22 | Fundamentals

A
Core 1 T | | T Core 1 T | T

A
Corel T, T:l T:l T Corel T, T:l | |T
T 1 ?
1

A

1 I I L4 I 1 I T
0 2 3 4 t[ms] 0 1 2 3 4 t[ms]

(a) Preemptive (b) Non-Preemptive

Figure 2.7: Example of (a) preemptive and (b) non-preemptive scheduling. The green colored
boxes indicate the execution of tasks. The gray colored boxes indicate the start delay.

execution based on the schedule defined by the static fixed-priority scheduling. The
priority ordering is Tp > T7 > T5. Task Ty has the highest priority is scheduled first
for execution. At time 2.5ms, it preempts task T,. Figure 2.6b shows the execution of
the same tasks but considering DM scheduling. Tasks have deadlines equal to their
periods. The priority ordering is defined by deadlines at the times tasks are activated.
For instance, at time 0 ms task T, gets the highest priority, because it has an earlier
deadline than Ty and T;.

Preemptive vs. Non-preemptive—In terms of multitasking, scheduling algorithms
are classified in preemptive and non-preemptive. In preemptive scheduling, higher priority
tasks preempt lower priority tasks. The context of the preempted task is stored and the
context of the new running task is loaded. Preemption guarantees deadlines for urgent
tasks. A straightforward priority assignment of tasks is often through fixed heuristics
such as RM and DM. RM assigns priorities based on periods of tasks, i.e., jobs with
a frequent arrival are served first and often have a shorter response time. The DM,
assigns priorities based on the deadline, such that tasks with the smallest deadline
take the highest priority. Non-preemptive scheduling was developed as an approach to
control data stability problems caused by preemption and to reduce the overheads
caused by a high number of preemptions. Shifting the preemption in time protects
critical data from instability state. Furthermore, non-preemptive regions decrease the
number of preemptions and thus the context-switching overheads. Another benefit is
that it avoids starvation of low priority tasks, which in fully preemptive scheduling
suffer frequent deadline misses. The number and position of preemption points is
defined at design time. They have to be optimal in such a way that high priority tasks
meet their deadlines and the schedule is valid [34, 35]. Non-preemptive scheduling is
known in the research community as limited preemption scheduling [36, 37].

Figure 2.7 shows an example of two tasks scheduled by preemptive and non-preemptive
fixed-priority scheduling. Figure 2.7a shows the execution of tasks Tp and T; (running
on the same core) defined by preemptive scheduling. Task T has the highest priority
and preempts task Tj at time 2ms. After termination of Tj, task Tp resumes on the
same core and continues execution until termination. Figure 2.7b shows the schedule
of the same tasks as of Figure 2.7a but considering non-preemptive scheduling. De-

2.1 Embedded Real-Time Systems | 23

spite of the higher priority, task T; does not preempt task Ty at time 2 ms but waits
until its termination.

Time- vs. Event-Triggered—Scheduling is further classified in TT and ET approaches
based on how certain system activities are handled. In the TT approach, task activation
and scheduling is initiated at fixed points in time, that are planned before the system
is deployed. In the TT scheduling, the schedule is planned at design time and the
start and resume times of jobs are stored in a schedule table. Based on this table the
scheduler takes decisions such as when to start, preempt, or resume a job. In ET
approach, tasks are activated based on the occurrence of events and are scheduled
on-line. In ET scheduling, the schedule is defined, for instance, based on priorities
that are configured at design time. But its the occurrence of events that triggers the
scheduler to take scheduling decisions based on defined priorities. An example of
such events is the periodic event occurring for activating a periodic task.

A detailed comparison of ET and TT approaches is given in [38, 39]. Table 2.1 lists the
essential attributes of both scheduling approaches based on the summarized work in
[38, 39]. TT has several advantages over ET, such as deterministic execution of tasks,

Time-Triggered Event-Triggered

Predictability v o
Fault Tolerance v o
Planning v o
Analyzability v v
Verification v v
Load distribution o v
Resource Utilization o v
Extensibility 4 v
Efficiency & Flexibility X v

Table 2.1: Qualitative comparison given in [38, 39] of time-triggered and event-triggered
scheduling approaches.
Legend: satistied (v'), partially satisfied (o), or unsatisfied (X).

simplified verification of timing requirements, control of scheduling delays, flexibility
in software functionality extensions, and fault tolerance. In contrast, the execution
behavior of ET scheduling is more efficient and flexible in terms of resource utilization,
as it is able to dynamically handle unpredictable events such as sporadic and a-
periodic events. Hybrid scheduling algorithms, that combine TT and ET approaches,
are proposed to unify the benefits of both approaches. Examples such as slot shifting

24 | Fundamentals

algorithm [40], sporadic server tasks and slack stealing algorithms [41] intend to
schedule firm/soft sporadic and a-periodic tasks in a TT schedule. These algorithms
search for available slots in which these tasks can execute. The slot shifting algorithm,
for instance, is not practical for safety systems because it changes the schedule at run-
time, which has gone at design time through the process of certification and intensive
evaluation of all functional and non-functional requirements. Nevertheless, multi-core
processors and future many-core processors, together with the hypervisor technology
[20], offer the capacity to isolate both worlds in the same hardware and simultaneously
get benefits of both paradigms without involving complex and resource consuming
algorithms. The following sections describe the TT and ET scheduling approaches
that are the focus of this work.

2.1.3.2 Focus of Scheduling

Scheduling algorithms found in practice and literature are a combination of scheduling
classes described in the previous section. These algorithms are extensively studied in
the research community and several approaches are proposed [42, 43], which either
assume an independent system or are impractical for multi-core in-vehicle systems.
Scheduling is often viewed as a mechanism to exploit the benefits of multi-core
processors, such that the system requires as little redesign as possible, timing and data-
age requirements are fulfilled, cores are sufficiently utilized, and scheduling overheads
are kept minimal. An optimal scheduling algorithm must guarantee a feasible schedule
and ensure robust execution of all tasks, taking into account unpredictable inputs
from the environment at run-time. On the other hand, a deterministic schedule
must be predictable and reproducible, both in design phase and target execution.
Knowing the advantages of TT and ET scheduling approaches, this work focuses
on Time-Triggered Scheduling (TTS) and Fixed-Priority Scheduling (FPS). They are both
partitioned, static, and preemptive scheduling strategies. FPS handles system changes
better at run-time and TTS guarantees predictable execution of tasks. The FPS defines
the order of execution of tasks running on the same core based on priorities assigned
to every task. These priorities are defined statically at design time and do not change
during execution. In TTS, tasks are scheduled by progression of time based on time
occurrences defined in a schedule table. The duration of the schedule table is the HP
of all periodic tasks. The activities (start and resume times of jobs) defined in the
schedule table are repeated at a period with the same length as its duration.

Figure 2.8 shows an example of three tasks running on the same core. The execution
of tasks in FPS follows this pattern: as long as a task is active, it is chosen by the
scheduler for execution and if another task with lower priority is running on the
core, it is preempted and the new task starts the execution. Figure 2.8a shows task
execution using FPS. Task Ty preempts task Tp, and T, resumes for execution after
both active higher priority tasks Tp and T; have finished execution. If priorities are
not changed, the start and resume time of T, cannot be shifted to an earlier or later

2.1 Embedded Real-Time Systems

v

O T .

T

SIS S g

AN

0

10

20

7

t [ms]

(a) The order of execution between tasks is defined by the priority order Tp > T; >
T. The preemption of T; and T, is not avoidable for this priority assignment.

n

I

e]

SIS

0

10

t [ms]

A
||- >
A
||!|||| >
20

(b) The order of execution between tasks is defined in the schedule table. The
schedule is constructed to have zero preemptions.

| 25

Figure 2.8: Example of (a) FPS and (b) TTS scheduling. The execution of tasks Ty, T1, and 1>,
defined by FPS and TTS scheduling approaches, is shown up to the hyper-period duration
(20ms). The black arrows indicate the release of tasks. The deadlines are equal to the periods
for all tasks. The solid green boxes indicate the execution of tasks. The light green boxes
indicate the preemption time due to execution of higher priority tasks. The gray colored boxes
indicate the start delay.

26 | Fundamentals

time, as it can be in the TTS approach. Figure 2.8b shows task execution using TTS.
Tasks are not scheduled by a fixed order between them, but by start times constructed
before their execution. By planning statically the TTS schedule, the execution of tasks
can be constructed mainly non-preemptive such that preemption delays are reduced.
As shown in Figure 2.8b, the preemptions of task T, are avoided in TTS by delaying
the execution of tasks Ty and Tj. In this way, the context-switching overheads are
reduced.

2.1.3.3 Scheduling Overheads

Activation, terminations, and preemptions of tasks induce run-time overheads that
impact their response times. These overheads are classified according to the activities
that the timer and the OS takes to handle operations on tasks and consider them during
schedule generation for minimizing their impact in the execution’s performance of
the application. These operations and their impact are described as follows. At every
task’s activation, the OS places the released job in the list of active tasks, allocates the
stack and updates the task information in the process control block. These operations
take an amount of execution time and execute in the context of the OS’s timer interrupt.
After tasks are activated, their active jobs are selected by the scheduler for execution.
Each time a job is loaded for execution, the OS loads the context of the task to Control
Processing Unit (CPU) registers. The context consists of the state of CPU registers, such
as the state of program counter, the state of stack pointer and the state of general and special
registers. During a task’s preemption, the context information is stored for resuming
the task’s execution at the point of preemption. At every task preemption, the OS
saves the context of the preempted task and loads the context of the new running
task. In general, the context-switching run-time at every preemption is divided in
the run-time required to save the context of the preempted task and in the run-time
required to load the context of the new running task. The context-switching run-time
is constant at every preemption point and it depends on the hardware architecture
and the amount of registers that have to be saved /loaded. However, in several OS
implementations it consists as well on operations such as for instance rescheduling
decisions by the scheduler algorithm, updating of the control block of the process, and
updating respective memory data structures.

Task preemptions are computationally expensive. They result in an increase of the
processor time and memory size. High number of preemptions cause high context-
switching overheads, which decrease execution performance of the system and cause
unnecessary delays that increase the response time of tasks. Additionally, cache
invocations occur each time tasks are preempted. The missing cache lines are reloaded
from memory to cache. The Cache-Related Preemption Delay (CRPD) defines the time
required to refill the cache at a task resume. It is assumed that CRPD is included in the
calculation of the WCET and do not handle it explicitly during schedule generation.
The higher the amount of tasks that are preempted at the same time the higher is the

2.2 AUTomotive Open System ARchitecture | 27

memory demand to store their stacks. Therefore, a high number of preemption must
be avoided during schedule construction. Finally, when a job finishes its execution,
the OS removes its information from the memory. The termination overhead consist
of the time that the OS takes to terminate tasks.

2.2 AUTomotive Open System ARchitecture

AUTOSAR ! is an open standard established in 2003 by several vehicle manufacturers.
Its purpose is to handle the complexity of automotive Electronic/Electric systems by
separating the application software from the ECU infrastructure. Through the concept
of Software Component (SWC)s [44], its layered software architecture [45], and its well-
defined communication semantics [46, 47], application functionalities are isolated and
their integration into an ECU system is simplified. A SWC can be ported to different
ECUs without affecting existing functionalities. Therefore, software providers reuse
software parts and decrease the costs of developing systems for different vehicle
manufacturers. AUTOSAR improves the interoperability of different development
tools through its standardized model-based approach of describing the system.

2.21 Layered Software Architecture

AUTOSAR offers independence between software applications and the ECU platform
through its layered architecture. AUTOSAR is divided in the following layers [45].

> The Software Application Layer [44] describes the application, sensor and actuator
SWCs, and their interaction behavior.

> The Runtime Environment (RTE) [46] is the physical implementation of the Virtual
Functional Bus (VFB). It provides Application Programming Interface (API)s that
handle the communication between SWCs and Basic Software (BSW) services [47].
These APIs are generated during ECU configuration, based on communication
information defined in VFB in early development phases. The VFB describes
all communication mechanisms between SWCs and their interfaces to the BSW
services. Each ECU has its specific RTE implementation.

> The BSW [47] provides services such as memory, resource management, dis-
tributed communication, and I/O services to application SWCs through dedi-
cated interfaces. It serves as a layer between RTE and the hardware platform.
It is divided in Services Layer, ECU Abstraction Layer, Microcontroller Abstraction
Layer (MCAL), and Complex Drivers Layer. The Service Layer provides OS func-
tionalities, network communication services, memory, diagnostic, ECU state,

https:/ /www.autosar.org/

28 | Fundamentals

Receiver PortPrototype
A

Sender PzrtPrototype

Software Component 1 Software Component 2

Connector 1

Runnable 1.1

Runnable 2.1

Runnable 2.2

Runnable 1.2

Client PortPrototype v
Server PortPrototype

Figure 2.9: SWC elements.

and management services. MCAL provides independence of upper layers of AU-
TOSAR from the micro-controller. The ECU Abstraction Layer offers interfaces
for accessing peripherals and devices. The Complex Drivers provide device
driver functionalities that are not specified in AUTOSAR.

2.2.1.1 Software Application Concepts

Components—An AUTOSAR software application is composed by several SWCs.
A SWC describes the functionality of a software application. Each SWC has well
defined ports, which are used to enable the communication with other SWCs and BSW
services. The internal behavior of SWCs is described by runnable entities, which have
access to the interfaces of the SWC they belong to. An AUTOSAR RunnableEntity, i.e.,
runnable implements the algorithm or functionalities of the SWC they belong to. A
SWC contains one or multiple runnables.

Different types of SWCs are specified in AUTOSAR. The application SWCs contain soft-
ware application functionalities. It interacts with other types of SWCs and uses BSW
services through dedicated ports. Further, the sensor-actuator SWCs contain specifics
of a sensor and/or actuator. The composition SWCs is a form of application software
component that groups logically several SWCs. It is used to hide the complexity of
multiple SWCs and their communication and to simplify the architectural design of
the software development. Figure 2.9 shows an example of two application SWCs.
The Software Component 1 and 2 contain each two runnables, which exchange data
through ports and interfaces.

Ports and Interfaces—In AUTOSAR, ports are communication interfaces between
SWCs. They receive and provide data via port interfaces. Ports also have other purposes
such as, for instance, to trigger runnables or mode switches. AUTOSAR distinguishes
between application port interfaces and service port interfaces. The SWCs access BSW
services via dedicated service port interfaces. The access to the hardware is enabled
by BSW through AUTOSAR Interfaces. The following main port interfaces are defined:

2.2 AUTomotive Open System ARchitecture | 29

> Client-Server interface, in which the server SWC provides an operation to one or
multiple client SWCs. The client SWCs icall the operation. Through this interface
ports receive and provide operations.

> Sender-Receiver interface, in which the sender SWC provides data and the receiver
SWC receives data through the interface. Through this interface ports read and
write data.

> Parameter interface enables SWCs to access constant or calibration data.
> Trigger interface allows SWCs to trigger other SWCs for activation.
> Mode Switch interface is used to notify a SWC for a mode switch.

The port of a SWC is connected to the port of another SWC via connectors. The data
element is made available to the receiver port only if a connector exists within SWCs.
Similarly, in Client-Server communication the server SWC receives a request by the
client SWC only if their ports are connected.

The application SWCs of Figure 2.9 exchange data using one Sender-Receiver and
one Client-Server interface. The output of Runnable 1.1 of Software Component 1 is
provided to Runnable 2.1 of Software Component 2 through the Sender PortPrototype.
The Runnable 2.1 receives the output of Runnable 1.1 through Receiver PortProto-
type. Similarly, Runnable 1.2 invokes an operation request and receives the results
of Runnable 2.2 via the Client PortPrototype. The Sender PortPrototype is connected
with Receiver PortPrototype via Connecter 1. The Client PortPrototype is connected
with Server PortPrototype via Connecter 2.

Runnables and Triggers—AUTOSAR runnables are activated by RTE [46] through
the concept of RTEEvents. These events activate or wake up dedicated runnables
at run-time. It is the responsibility of the RTE to manage the triggering of events.
Different activation patters are defined for runnables in AUTOSAR. TimingEvents
are used for triggering cyclic activation for runnables, in which a periodic event
is assigned to occur periodically. In Sender-Receiver communication, runnables
are activated by DataReceiveEvent as a consequence of receiving a new value for
a referenced data element. Similarly, after the successful sending of a referenced
data element, the runnable is activated via the DataSendEvent. A RunnableEntity is
activated during mode-switching via the ModeSwitchEvent (mode switch is initiated)
or via ModeSwitchAckEvent (mode switch is successfully acknowledged). In this
case, the triggered RunnableEntity is executing in the new mode. In Client-Server
communication, a runnable is triggered by a client request. The server runnable, that
provides the output to the client runnable, is executed either in the context of the client
runnable or in the context of another task. This work focuses on the communication
of periodically triggered runnables only.

30 | Fundamentals

Tasks and Triggers—Runnables are executed in the context of tasks or other runnables
(in case of server runnables). There are two types of tasks in AUTOSAR OS [19], the
extended and basic tasks. The extended tasks are activated once and never terminate.
They switch to waiting mode after they finish the execution of their runnables. They
wake up if an event is set to execute any of their runnables. The basic tasks activate
periodically and terminate after they finish their execution. The states of the tasks,
such as ready, running, waiting, and suspended, and their transitions are described
in detail in [19]. Runnables are mapped to extended or basic tasks during ECU
configuration. The activation of runnables is implemented within the body of the task
by RTE generators through dedicated events (controlled in if..else conditions), which
are handled by RTE. In AUTOSAR, tasks have their period defined by periods of their
runnables. They are activated either by counters [19, p. 97], alarms [19, p. 100], or
schedule tables [19, p. 40]. Counters are mapped to alarms and schedule tables. They
are incremented and reset during the run-time. A counter can be hardware or software
based and is derived from a timer. Counters are mapped and manipulated by one core
only. Alarms activate tasks, set events, or increment counters. An alarm is associated
to one counter. When an alarm expires, a task is activated or an event is set.

The schedule table is a time-triggered approach of activating runnables/tasks and
events. It is defined by a set of expiry points, an initial offset, and duration in ticks.
At the occurrence of an expiry point, the activation of tasks or the setting of events
takes place. The time of occurrence of an expiry point is defined by a unique offset.
The schedule table is configured to be either repeating or single-shot. The former
one is useful for triggering, for instance, initial tasks that are executed only once at
the system start up. In the repeating schedule table, the expiry points are repeated
identically after the duration of the schedule table is reached. In this work, the concept
of scheduling table is used to activate tasks, as it provides the possibility to optimize
the use of the hyper-period time interval. This is especially the case when FPS is
used to schedule tasks. Moreover, AUTOSAR provides the possibility to synchronize
different schedule tables and improve the end-to-end delays between different ECUs.
AUTOSAR tasks are scheduled using the FPS approach. They are configured during
ECU configuration to run preemptive or non-preemptive.

2.2.2 Communication Paradigms

In AUTOSAR, the communication between software components is enabled by two
major paradigms: Sender-Receiver and Client-Server communication. The communi-
cation between runnables of the same SWC is handled through Inter-Runnable com-
munication, which is a special form of Sender-Receiver communication. The RTE
provides APIs to enable the communication between runnables for any of the afore-
mentioned paradigms. Because communication is only possible through port inter-
faces, respective Sender-Receiver and Client-Server port types are created for each
communication paradigm. An example of Sender-Recever, Client-Server and Inter-

2.2 AUTomotive Open System ARchitecture | 31

Software Component 1 Software Component 2

Runnable 1.1 Runnable 2.2

: Rte_IrvRead_<data>()

| Rte_IrvWrite_<data>()

Runnable 2.1

6 8 | |
1 |
Rte_Write_<port>_<data> (..)| !
|

Runnable 1.2

Rte_Results_<port>_<data> (..)
I

Rte_Call_<port>_<data> (..) : Rte_Read_<port>_<data>(..)
! ! .
T

|
! T | RTE

Figure 2.10: Example of AUTOSAR Communication Paradigms.

Runnable communication is shown in Figure 2.10. The sender Runnable 1.1 of Soft-
ware Component 1 writes the data via Rte_Write_<port>_<data>() API. The receiver
Runnable 2.1 of Software Component 2 reads the data via Rte_Read_<port>_<data>()
API. Similarly, the client Runnable 1.2 of Software Component 1 invokes an oper-
ation via Rte_Call_<port>_<data>() API, and uses the asynchronous operation via
Rte_Results_<port>_<data>() APL In Software Component 2, Runnable 2.1 writes via
Rte_IrvWrite_<port>_<data>() API an inter-runnable variable that is read by Runnable
2.2 via Rte_IrvWrite_<port>_<data>() APIL. The semantics of these APIs are defined in
the RTE specification document [46].

Client-Server communication—is a communication paradigm where SWCs request
and provide operations among them. A client runnable enforces a call or uses an
operation that is implemented by a server runnable. These operations are defined
at design time. The Client-Server communication has two forms of transmissions:
synchronous and asynchronous communication. In synchronous transmission the client
RunnableEntity is blocked during the call, i.e., waits for the server RunnableEntity to
tinish and then returns to the context of the client RunnableEntity. In asynchronous
call, the client RunnableEntity is not blocked and can execute other operations while
the server RunnableEntity executes in parallel.

Sender-Receiver communication—is a paradigm that enables communication based
on data elements, in which the sender SWC provides the data and the receiver SWC
consumes the data. The exchange of data is asynchronous because the sender SWC
does not wait for the receiver SWC to receive the data. AUTOSAR defines two forms
of Sender-Receiver communication: implicit and explicit communication. In explicit
communication, runnables have a direct read or write access to the data elements, i.e.,
to a version of data that is globally visible to all runnables that exchange this data.

32 | Fundamentals

Runnables have access on the data through RTE APIs, which provide the latest atomic
version of a data element. In implicit communication, runnables have read or write
access to a buffered data element. This form of communication is standardized in
AUTOSAR to avoid data stability issues caused by preemption or by parallel read and
write accesses between runnables executing on different cores. The RTE provides to
runnables a copy of the data. Runnables have exclusive access on the provided copy.
This work focuses on the implicit communication for LET and describes a buffering
mechanism for this type of communication that satisfies the semantics of LET.

Inter-Runnable communication—uses InterRunnableVariables to handle the asyn-
chronous communication between runnables of the same SWC. Runnables have a read
or write access to these variables. As in Sender-Receiver communication, AUTOSAR
distinguishes between implicit and explicit Inter-Runnable communication. However,
the queued explicit pattern is not allowed in Inter-Runnable communication.

AUTOSAR communication paradigms are designed to be applied for the Inter- and
Intra-ECU communication. In the Intra-ECU case, the send and receive operations of
the Sender-Receiver communication are read and write operations to the shared data
elements. In the Inter-ECU case, the communication is handled through communica-
tion services of BSW and distributed bus communication protocols. This work focuses
only on the Intra-ECU communication.

2.3 Deterministic Multi-Core Systems

The following sections describe the impact of multi-core technology on the functional
and timing requirements of embedded automotive systems and present the LET as a
way to reduce this impact and ensure deterministic execution of these systems.

2.3.1 Multi-Core Effects

Multi-core processors offer for embedded applications advantages such as higher
computing capacity and improved response times. Parallel execution of application
functions on different cores reduces the time required to deliver produced outputs.
In this way, functions deliver their outputs faster but also use concurrently the same
processor resources such as shared memory and crossbars/buses. Concurrent accesses
to these resources can cause bus and memory arbitration delays, leading to non-
determinism and unpredictable timing [48]. In parallel executing applications with
frequent data accesses, these interferences can degrade the performance and make the
multi-core technology inefficient. Another form of multi-core interference arises due to
concurrent, parallel accesses to shared resources such as semaphores or spin-locks [19].

2.3 Deterministic Multi-Core Systems | 33

A

Ty
A

Ty R(T,F) vW(F) Incoherent
RS) © W) daas; [T [F |
datas; [5 | 7 | datas; [F |
A v R(5) _ R(7) Unstable “LLR(T,F) ; iR(F,F)Unstable
T, T T | —> T, T T | —
0 2 3 t[ms] 0 1 2 3 tlmg]
(a) Stability (b) Coherency

Figure 2.11: Example of (a) data stability and (b) coherency problem. Task Ty and T; run on
different cores. In (a), task Tp modifies the value of data element S; while task T is executing
on the other core. After some time, task T; reads another value of data element S; compared
to the first read. In (b), data elements S; and S, are not updated coherently by task Ty, leading
to incoherent reads by task T;. Values F and T indicate Boolean values False and True.

Locks over these resources are prone of deadlocks, which in multi-core processors are
hard to avoid using single-core based protocols such as PCP [23], unless the application
is designed such that coinciding requests occur in isolated time slots during execution.
To avoid deadlocks in multi-core processors, several locking protocols are proposed
[5, 49, 50]. Nevertheless, the delays and the core load added due to waiting for the
same resource, yet impacts the performance and task’s response times, and in certain
situations they can cause deadline violations. As a result, the temporal isolation
of high criticality functions is compromised by interferences between cores due to
accesses to shared resources such as memory, bus, and semaphores.

Parallel execution of tasks in multi-core processors impacts the way data elements are
accessed. Problems with data stability, consistency, and coherency can occur if parallel
executing tasks access simultaneously the same data elements. Data stability and
consistency issues arise if writer tasks update data elements that are simultaneously
and concurrently consumed by reader tasks on other cores. Data stability [51] is
satisfied if a task reads the same value of a data element throughout its execution.
Figure 2.11a shows an example of two tasks running on two different cores. Task Ty
causes an unstable read of data element S; to task Ty. Between time O ms to 1 ms, task
Ty reads value 5 of data element S;. At time 1 ms, task T starts execution on the other
core and changes the value of 51 from 5 to 7. At time 2 ms task T; reads value 7, which
is different from the first read value of S;.

Data consistency refers to the consistent and correct state of data. An inconsistent
value of data occurs when the data is updated concurrently by multiple tasks during
a non-atomic read or write operation.

In single-core systems, preemption also leads to data stability and consistency issues.
This happens when a task is interrupted during a read or write operation. During

34 | Fundamentals

the time the task is in the preempted state, another task updates the data, and when
the task resumes its execution, it reads a different value of the data. To avoid data
consistency issues, the AUTOSAR OS provides the possibility to disable and enable
interrupts before and after non-atomic read and write operations. The interrupt
enabling and disabling for each data access adds delays and extra load to the system.
In multi-core systems, shared resources are needed to preserve atomic data operations,
i.e, consistency, which increase system’s load due to the access and waiting delays on
these shared resources. To avoid data stability issues in single-core processors, non-
preemptive scheduling is used, in which the preemption is shifted to certain points in
time [35], such that the data stability is maintained. Non-preemptive scheduling is not
suitable for every application due to its complex design and unnecessary calls of the
scheduler. In multi-core systems, data stability cannot be guaranteed by scheduling,
because non-preemptive regions within tasks cannot avoid concurrent, parallel read
and write accesses to the same data between functions running on different cores.
In AUTOSAR, the implicit Sender-Receiver communication is used to ensure data
stability for both single- and multi-core processors.

Data coherency [51] issues occur when a group of related data elements is not updated
instantly. Examples of data elements that must be updated coherently and instantly
are the ones of structs and arrays types. Figure 2.11b shows an example of two tasks
running on different cores. Data elements S; and S; are of type Boolean. They must
have complementary values and must be updated jointly, i.e., they must not have
at the same time value True or False. However, task Tp changes the value of S;
incoherently (without changing S,) from False to True while T; reads value False of S,
concurrently at two different time instants, causing an incoherent read operation of
task T7. Another form of data coherency is caused by cache memory, which causes
multiple tasks running on different cores to operate on different versions of data.
Cache coherence protocols are developed to keep the data coherent.

2.3.2 Timing and Dataflow Determinism

A key non-functional requirement for correct and safe execution of embedded system
is determinism. Determinism implies that the results of a task’s execution must be pre-
dictable and reproducible during design and target execution. In multi-core processors,
determinism is affected by issues such as high delays due to task interferences for
shared resources, unpredictable communication, deadlocks, time starvation, resource
deprivation, and data consistency and stability issues [52].

Two aspects of determinism are important to be guaranteed for embedded in-vehicle
systems: the dataflow and time predictability. In single-core processors, dataflow is
ensured through the sequential execution of functions and tasks. It is defined and
impacted by design decisions such as scheduling and mapping of functions to tasks.
In multi-core processors, dataflow is influenced, in addition to scheduling, by parallel
execution of tasks. Time predictability refers to the regularity of the delivery time

2.3 Deterministic Multi-Core Systems | 35

of outputs by tasks. In embedded applications, tasks have a producer — consumer
communication relation and the time of produced outputs is critical for a correct
end-to-end dataflow, e.g. from sensor to actuator [53]. The deadline requirement is
defined to indicate that task’s outputs are produced within an expected time interval,
such that they are either usable by consumer tasks or sent to actuators without latency.
The time of produced results is influenced by scheduling decisions and the multi-core
platform. Scheduling influences this time by defining the time that tasks execute and
terminate. For instance, higher-priority tasks produce results faster than lower-priority
ones, and the opposite holds for delayed or preempted tasks. In terms of multi-core
platform, the time of produced results is increased due delays caused by concurrent
accesses on shared resources. These delays are dynamic, highly nondeterministic,
and hard to precisely estimate at design time. Therefore, ensuring end-to-end delay
requirements and dataflow correctness results in higher design and development
effort for multi-core systems.

This work applies the LET paradigm [7] to ensure data stability, time and dataflow
determinism. Fully deterministic multi-core systems are hard to build, because multi-
core processors are unpredictable in nature and embedded automotive applications
have frequent irregular external inputs. LET paradigm increases determinism and
reduces development effort of these systems. A detailed description of LET and its
advantages is given in the following section.

2.3.3 The Logical Execution Time (LET)

LET is a programming paradigm [6] introduced for TT systems with the Giotto
programming language in [7, 54] and for ET systems with the xGiotto language in [55]
to provide time and dataflow determinism of an embedded real-time system. LET
semantics and benefits are described in the following sections.

2.3.3.1 Semantics of LET

In the LET paradigm, each periodic task is bound to a specific logical time interval,
called the LET interval. LET specifies fixed time points at which periodic tasks
exchange data with each other. Tasks read input data at the beginning and write
outputs at the end of their LET intervals with a logical execution time of zero. The
actual scheduling and execution of tasks occur within their LET intervals. A task
starts execution after its inputs are read and terminates before its outputs are written.
Outputs are provided exactly at the end of LET intervals, even if tasks finish their
execution earlier than this time. In this way, LET provides time, value, and dataflow
determinism of data exchanges between tasks.

36 | Fundamentals

Release) Next Release
Period

N Duration
Logical
View | Offset ~ Logical Execution Time (LET) v T
Physical Time ’
fE ERmE §

Read Start Tern:inate Write

Inputs Outputs

Figure 2.12: The LET task model. The periodic task is bound to a LET interval. In the logical
level, tasks read their inputs at the beginning of their LET and write the outputs at the end of
their LET at zero-execution time. In the physical level, the data exchange at LET boundaries
occurs taking some execution time. The physical data exchange is depicted by yellow boxes.
Tasks execute at any time within their LET intervals. The green boxes indicate execution time
of the task. The LET interval is depicted by the gray box. The light-green pattern colored boxes
indicate the preemption time of the task. The red arrow indicates the end time of the LET
interval. The design of this figure is inspired by the classic abstraction of LET given in [55-57].

Figure 2.12 depicts the structure of a periodic task defined by LET. The release time of
a task corresponds to the release, i.e., start of its LET interval. This time is determined
by the offset and the period of the LET interval, which are identical with the offset and
the period of the task. Because the release time and the end time of a LET interval is the
same in any platform, the data exchange times are independent from the platform. In
this way, LET maintains the time and dataflow between functional components of the
application also when the platform changes. The termination, i.e., end time of a LET
interval is defined by its release time and the duration of the interval. It corresponds
to the absolute deadline of the task. To guarantee that tasks do not execute beyond the
end times of their LET intervals, their respective WCETs must not exceed the duration
of their LET intervals.

In LET, the time of reading inputs and writing outputs is known and is identical
in the logical and physical view. In Giotto [7], data communication is implemented
through ports defined in each LET task. The drivers, referred to as communication
tasks, transfer the data between ports of different tasks. The assumption of zero
execution time of data exchanges at the boundaries of LET is not realistic in practical
systems. Depending on the data exchange mechanism used to integrate the semantics
of LET into these systems, the amount of time for reading inputs and writing outputs
in the physical view varies between tasks and can be greater than zero. The actual
execution and scheduling of the task is known only in the physical view. Scheduling
must guarantee that tasks finish their execution before the end of their respective LET
intervals. The LET task model is suitable for any scheduling scheme because dataflow
between LET tasks is independent from the scheduling mechanism. Therefore, LET
task model can be applied to various approaches such as FPS or TTS.

2.3 Deterministic Multi-Core Systems | 37

ol | o
T; . T, 4L>|_| . T, #»l | .

(a) (b) (©)

Figure 2.13: Example of delivering data without LET paradigm. The data delivery time
depends on task-to-task interferences such as scheduling and task allocation decision. The
green boxes indicate the running time of tasks. Figure 2.13a shows the execution of Ty and Tj.
Task T; has the highest priority and delivers the outputs at time 1 ms. In Figure 2.13b, task T;
has lower priority than Ty and delivers the outputs at time 2 ms with a start delay y of 1 ms.
In Figure 2.13c, tasks Ty and T; execute on a processor with lower frequency, in which task T;
delivers the outputs at time 3.5 ms with a start delay u of 2ms.

2.3.3.2 Fundamentals of LET

The LET paradigm provides a variety of benefits for multi-core development of
embedded real-time systems. Due to its concept of fixed data exchange points between
tasks, it reduces the effort of designing such systems for different multi-core processors.
Although LET has the highest benefits for multi-core systems, it can also be used in
single-core systems. A selection of benefits are discussed in the following paragraphs.

Deterministic communication — LET provides deterministic functional behavior of
software applications by means of time, value, and dataflow determinism. In LET, tasks
exchange data at the boundaries of LET intervals. The time of exchanging the data
is deterministic in the sense of known communication times and end-to-end delays.
This time is known, verifiable, and identical for different platforms. LET eliminates
jitters of produced outputs and prevents unpredictability in timing. Dataflow between
tasks is independent of their execution. Hence, the timing and order of data exchanges
between tasks running on the same or different cores is predictable and unaffected
by design decisions such as task-to-core allocation and scheduling. A significant
advantage of the LET paradigm is platform independence. Platform refers here to
the OS and the hardware processor. In LET, the actual execution of tasks does not
affect the delivery time of data unless a deadline violation has occurred. In non-LET
systems, the time of delivering outputs is determined by the actual execution of tasks.

Figure 2.13 and Figure 2.14 illustrate an example of delivering outputs without and
with LET, respectively.

Data stability — In LET, preemption and parallel execution of tasks does not effect
data stability. Exchanging the data at the boundaries of LET intervals ensures a stable
version of data for consuming tasks throughout their respective LET intervals. The
consuming tasks read stable data at any time independently if they get preempted
during execution or if other parallel tasks modify simultaneously the same data.

38 | Fundamentals

T, R g T R Tt L]
I I I 4 I I I I 4 I I I I 4
0 1 2 3 4 t[ms] 0 1 2 3 4 t[ms] 0 1 2 3 4 t[ms]

(a) (b) (©

Figure 2.14: Example of delivering data with LET paradigm. Task T; produces the data at any
time during its execution, but it is made available at time 4 ms, that corresponds to the end
time of its LET interval. The green boxes indicate the running time of tasks and the gray boxes
represent the LET interval. Figure 2.14a shows the execution of Ty and T;. Task T; has the
highest priority and delivers the outputs at time 4 ms, which corresponds with the end of its
LET interval. In Figure 2.14b, task T; has lower priority than Ty and delivers the outputs at
time 4 ms independent of start delay y of 1 ms. In Figure 2.14c, tasks Ty and T; execute on a
processor with lower frequency. Task T; delivers the outputs at time 4 ms independent of start
delay y of 2ms.

Isolation of memory contentions — The realization of LET semantics depends on the
data exchange mechanism used to enable data exchange at the boundaries of LET
intervals. For lock-based buffer mechanisms such as PTP, physical data exchange
operations take place at the boundaries of LET intervals. In multi-core systems that use
PTP, isolation of read and write accesses to shared memory at the boundaries of LET
intervals decreases the unpredictability coming from arbitration and blocking delays of
concurrent access to shared memory during task execution. In this case, interferences
occur only during the data exchange operations. Isolation of these operations can also
be accomplished, for example, by disabling their parallel execution and scheduling
them to execute sequentially and uninterruptedly among cores [58].

Multi-core platform migration — LET reduces the effort of migrating embedded appli-
cations to multi-core platform. Migration of these systems to new platforms involves
re-implementation and re-design effort for the specific platform. If necessary, new
design decisions are taken such as re-mapping of functions to tasks, reallocation of
tasks to cores, or regeneration of the schedule. Because LET provides platform inde-
pendence, the redesign decisions on the new platform do not directly impact the data
exchange time and dataflow between functions. LET supports parallel execution of
the software application on multiple cores and enables functional correctness without
the need to explicitly adjust the execution order between runnables of different cores,
e.g., by offsets or scheduling. In LET, the dataflow between tasks is defined by the
dataflow between their LET intervals. Therefore, if the design of LET intervals is not
changed during the migration, the dataflow and timing is guaranteed, regardless of
scheduling and on which core tasks are mapped to execute.

Simplified verification of the dataflow and timing requirements — In systems that
apply LET semantics, verification of the dataflow and end-to-end delays is straight-
forward due to the time-based structure of data exchange points. In this way, the

2.3 Deterministic Multi-Core Systems | 39

verification effort of the dataflow and timing requirements is significantly reduced
compared to when LET is not applied.

Extensibility — Extending the system with new functionalities, i.e., adding new func-
tions or tasks does not impact the communication behavior and determinism. How-
ever, it has an impact on decisions such as reassigning tasks to cores, regenerating the
schedule, or synthesizing buffers for the new functions or tasks.

Co-development — The cooperation between control and software integrator teams is
more efficient with LET because timing is understood in the same way [7].

An example showing the described benefits of LET is given in Figure 2.15. A dataflow
consists between tasks Ty, T;, and T5. In the configuration of Figure 2.15a, tasks are
allocated to execute on different cores. Because data exchanges occur at the boundaries
of their LET intervals, concurrent data accesses on the same data elements are avoided
in overlapping LET intervals for tasks running in parallel on different cores. Hence,
data stability, the dataflow and end-to-end delays are ensured. Figure 2.15b shows
the same application but assuming that new functionalities are added to task T,
indicated by a longer execution time, and the allocation of task T is changed to Corey.
In this case, two aspects have changed: the platform, indicated by the new task-to-
core allocation and scheduling, and the system is extended with new functionalities.
Because data exchanges between LET intervals occurs at the boundaries of LET
intervals, the execution order between T; and T3, defined by scheduling, does not
affect the dataflow between these tasks. Similarly, concurrent accesses between Tj
and T; and T; and T, are also avoided by LET. Hence, the dataflow and end-to-end
delays are not affected by these changes. In both designs, the end-to-end delay is 9 ms.
LET enforces that end-to-end delays are constant regardless of the system’s design
configurations, which simplifies their verification and reduces the effort required to
ensure that timing requirements are met.

2.3.3.3 Specification of LET in AUTOSAR

LET is specified in AUTOSAR since release 4.4.0 in Timing Extensions (TIMEX) [59].
LET intervals are described via event chains and periodic, offset, and latency timing
constraints [59]. In AUTOSAR, unlike the original definition of LET [7], a LET interval
is associated with a group of runnables instead of a single task. Therefore, the implicit
data accesses of the Sender-Receiver communication of the runnables mapped to LET
intervals are performed using LET semantics. The software integrator must ensure
that runnables of LET intervals with different timing information such as offset, period,
and duration are not mapped to the same task. This is because there is no guarantee
that the data exchange operations of different LET intervals occur exactly at their
boundaries, unless it is ensured that all runnables of the task terminate their execution
before the earliest end time of the LET intervals of the task. In this case, the complexity

40 | Fundamentals

I --------------- End-to-end delay--------------- »
To m tl:l tl:l Corey
N
concurrent access \
A
0 3 9 t [ms]

(a) Tasks run all on different cores. The dataflow and end-to-end delays defined by
LET intervals of tasks Ty, T7, and T;. The dataflow is Ty — T; — T». The concurrent
accesses in overlapping LET intervals of tasks Ty, T7, and T, running on different cores

are avoided by LET.
T End-to-end delay--------------- ”
Ty tm:' . tl:l Corey
Prohibited ™ Prohibited data
A concurrent access ™ A exchange order
A AN
0 3 6 9 t[ms]

(b) Tasks Ty and T run on the same core and task T, is extended with new functionali-
ties. The dataflow and end-to-end delay defined by LET intervals of tasks Ty, T, and
T; are ensured. The dataflow is Tp — T7 — T,. The concurrent accesses in overlapping
LET intervals between tasks Ty and T, and T; and T, running on different cores are
avoided by LET. Tasks T and T; have a fixed execution order defined by scheduling,
but no data exchange occurs between them in overlapping LET intervals.

Figure 2.15: Example of benefits provided by LET. The green boxes indicate the running time
of tasks and the gray boxes represent LET intervals. The dataflow between LET intervals is
shown by the green dashed arrows.

2.3 Deterministic Multi-Core Systems | 41

of the scheduling increases significantly. Therefore, this work assumes that runnables
mapped to one LET interval are all mapped to the same task.

| 43

3 | Inter-Task Communication Design

This chapter introduces buffering techniques that reduce memory requirements and
data-synchronization overheads induced by Logical Execution Time (LET). A descrip-
tion of the problems solved in this chapter and the overview of several real-time
programming paradigms, that are used as baseline for LET, are given in Section 3.1.
The research literature and the review of techniques that apply LET paradigm in em-
bedded applications are provided in Section 3.2. The proposed Static Buffering Protocol
(SBP), which is designed to apply LET in automotive applications w.r.t plausible mem-
ory and run-time overheads, is described in Section 3.4. The Point-to-Point Protocol
(PTP) is an alternative buffering protocol described in this work to preserve LET’s
semantic. The PTP is not designed to minimize the memory and buffering run-time
overheads but to handle the dynamic execution behavior of the application. A brief
description of PTP is given in Section 3.3. A comprehensive evaluation of memory
and synchronization run-time costs of PTP and SBP is conducted in Section 3.5.

3.1 Introduction

The widely used real-time programming model in embedded applications is the
Bounded-Execution Time (BET) [6]. In BET, the execution of a task is divided into an
input, a computation, and an output part. The input part corresponds to reading of the
input data consumed by the task, the outputs are computed in the computation part
and are written in the output part. In BET, tasks exchange data, i.e., they communicate
with other tasks mainly at the boundaries of their physical execution times. Typi-
cally, this communication is handled through expensive lock-based synchronization
mechanisms such as semaphores or through lock-free communication protocols. For
each task, a lower and an upper bound on the execution time are defined, denoted as
Best-Case Execution Time (BCET) and Worst-Case Execution Time (WCET), respectively,
which are bounded by the deadline. Hence, in BET the execution of tasks is correct if
the tasks complete their execution before their next release or before their deadlines.

BET lacks time and value determinism. Thus, changing the platform or extending the
application with new functionalities such as adding or removing tasks changes the
time when tasks exchange data. This drawback is resolved by LET [7]. The LET model
handles better system changes than BET because it separates the input and outputs
parts from the actual execution of the task. In LET, outputs are not written as soon as
they are available as it is in BET, but at the end of LET intervals. In LET, the reading of

44 | Inter-Task Communication Design

Ty Ty |l |l _l_l
o em lom Amsilisenlisen

T T T T T T T 1
1 2 3 4 5 6 t[ms] 0 1 2 3 4 5 6 t[ms]

(a) Data exchange in BET. (b) Data exchange in LET.

Figure 3.1: In BET, data is consumed at the boundaries of execution time or at any time during
execution. In LET, data is exchanged at LET boundaries. In BET task T; consumes data
produced by the parallel instance of task Ty. In LET, task T; reads the produced data by the
previous instance of task Ty. The solid green filled boxes indicate the execution of tasks. The
gray boxes indicate the LET intervals. The dotted lined arrows demonstrate the direction of
exchanged data.

inputs and writing of outputs occur instantaneously in zero time and at the boundaries
of LET intervals. The LET paradigm is a derivative of both BET and Zero-Execution
Time (ZET) programming models [6]. The ZET paradigm is based on the semantics of
synchronous-reactive programs [60, 61] and assumes that computations are logically
fast and data exchanges occur in zero execution time.

Figure 3.1 shows an example of two tasks exchanging data at the boundaries of their
BET and LET. In Figure 3.1a, task T; consumes outputs produced by task Ty directly
after T finishes its execution. In Figure 3.1b, task T; consumes the provided outputs
with a time delay, defined by the end of the LET duration of Tj. In LET, T; reads at
every instance only the data produced by the previous instance of Tp, and not the
freshest value produced by the parallel active task’s instance, as it happens in BET.

The LET paradigm, just as BET and ZET, is only applicable to processor platforms in
which the WCET can be estimated. In multi-core systems, the WCET is unpredictable
and hard to estimate due to delays caused by interferences on shared hardware re-
sources. These interferences are hard to estimate because of the dynamic arbitration of
shared resources and nondeterministic blocking delays caused by concurrent accesses
to bus and shared memory [62] . To properly define the LET duration for LET tasks,
a safe upper-bound of WCET, usually pessimistic, must be calculated such that the
application executes without LET interval violations. This work assumes that WCET
is pessimistic and lower than the LET duration.

Several challenges emerge when integrating LET into automotive applications. LET
decreases the control quality due to the increase of the end-to-end duration of the
control flow between tasks [8]. This drawback of LET is influenced by how LET
intervals are designed. Because outputs are made available for other tasks at the end
of task’s LET interval, reducing the duration of LET intervals reduces as well the
end-to-end duration of the control flow.

The assumption of zero execution time for reading of inputs and writing of outputs
at the boundaries of LET intervals is not valid for buffering protocols such as PTP

3.2 Related Work and Problem Analysis | 45

[8]. PTP causes run-time overheads due to buffering operations at the boundaries of
LET intervals. These overheads increase not only the demands for processing power
[58], but also the duration of LET intervals, because tasks must not execute beyond
the duration of their LETs. The buffering overheads are differently referred to as
Worst-Case Communication Time (WCCT). Hence, the duration of a LET interval must
be greater than the sum of WCCT and task’s WCET.

An increase of the LET interval’s duration means longer end-to-end delays, which
makes the LET paradigm impractical for certain control applications. Although
communication overheads are also present in BET model, they do not impact the
control flow between functions of the application in the same way as LET, because
in BET outputs are made available during or after tasks finish their execution. An
example of buffering in BET model is the implicit Sender-Receiver communication
[46] of AUTomotive Open System ARchitecture (AUTOSAR), in which outputs are made
available after each runnable’s execution. Therefore, the buffering overheads are
distributed over the execution of the task, and the output delays are defined by the
actual scheduling and WCET of the task. It shall be noted that although LET is
designed to provide constant end-to-end delays, in PTP it is not the case because
jitters of produced results occur due to scheduling of multiple buffering operations at
boundaries of LET intervals [63].

Finally, to ensure the semantics of LET, additional data variables are needed, thus
increasing the memory capacity demands. For example, in PTP global variables, i.e.,
buffers are added to store the version of data in which LET tasks read and write during
their execution within their LET intervals.

To integrate LET into automotive systems, a buffering protocol must be designed
to enable data exchanges between tasks at the boundaries of their LET intervals.
To achieve a practical and efficient integration of LET for automotive systems, the
design of such protocol must address the impact of LET on end-to-end delays and
the required memory and processing resources. In this work, SBP is proposed to
efficiently integrate LET into automotive applications such that memory demands
are reduced, buffering overheads and jitters on data exchanges between tasks are
eliminated, and determinism is fully ensured. By eliminating buffering overheads at
the boundaries of LET intervals, SBP provides capacity to reduce end-to-end delays
and increase schedulability of the application.

3.2 Related Work and Problem Analysis

The following sections provide an overview of the buffering mechanisms that are
designed for inter-task communication of embedded applications.

46 | Inter-Task Communication Design

3.2.1 Data Stability and Integrity

This section describes buffering protocols that are designed to guarantee Synchronous-
Reactive (SR) semantics and data stability of BET applications. These protocols are
not designed for LET applications, but are used in this work and in the research
community to derive approaches that fulfill LET semantics.

3.2.1.1 Circular Buffering Protocols

Kopetz et al. [24] propose the Non-Blocking Write (NBW) protocol as a lock-free approach
to handle data stability issues that arise from concurrent read-write operations on
data shared between one writer task and multiple reader tasks. The initial version
of the protocol avoids data stability issues by enforcing a concurrency check at the
end of the read operation of each reader task. The concurrency check observes if a
concurrent write operation has occurred during the read operation. If an interference
has occurred, then the read operation is repeated until no interference occurs. The
drawback of this approach is the unpredictable amount of retries, which makes the
protocol inefficient [24]. Hence, the authors improve the NBW by enforcing the concept
of multiple buffers of the same data and the wait-free circular buffering behavior. In
the cyclic NBW, writers use buffer elements cyclically and have exclusive access on
them. Readers consume the recent produced data stored in a buffer element in which
the writer task does not concurrently write until the read operation is performed.
The number of read interferences is used to define the amount of buffers required to
handle the stability of data operations.

Ntaryamira et al. [64] apply the circular buffering methodology of NBW to avoid data
stability issues that occur due to preemption or concurrent operations on shared data
between reader and writer tasks. In their circular buffering approach, a First In - First
Out (FIFO) buffer is used, in which read and write accesses are granted circularly
until the end of the buffer is reached. The read accesses are assumed to take place
at the activation of reader tasks and the writes at the termination time of the writer
task. Differently from the approach in [64], in the classical FIFO protocol, reader tasks
receive all outputs, stored in a FIFO queue, produced by a writer task. The queue is
emptied by the reader task after the processing of outputs takes place. An example
of the classical FIFO protocol is the queued Sender-Receiver communication [46] of
AUTOSAR. Ntaryamira et al. [64] define constraints that describe a functional relation
of inputs and outputs between multiple tasks and define the buffer size considering
the functional relation between reader and writer tasks. They define the buffer size
based on the timing characteristics, i.e., period and response times of the reader and
writer tasks, and on their functional-chain relation [64]. In the case of single-writer
multiple-readers communication, the buffer size is defined as (ﬁ—uﬂ , where R, is the
largest response time among all reader tasks and P, is the period of the writer. In their
approach, it is ensured that a reader task consumes the recent produced value, among

3.2 Related Work and Problem Analysis | 47

multiple produced ones, by calculating the number of produced outputs between
two occurrences of a reader task. This number is calculated on-line at the end of
writer’s execution and is referred by the authors as the sub-sampling-rate. The sub-
sampling-rate is incremented by one at each execution of the writer task. Hence, the
reader consumes the element of the buffer that is previous to the sub-sampling-rate.
Ntaryamira et al. [65] extend the FIFO circular buffering with mechanisms that enforce
reader tasks to read the version of data that is consumed by the slowest reader task
for tasks that are part of an event chain.

3.2.1.2 Dynamic Buffering Protocol (DBP)

Sofronis et al. [10] propose the Dynamic Buffering Protocol (DBP) as an optimal wait-free
approach to preserve data stability and the SR semantics of preemptive tasks, such that
memory requirements for storing buffer elements are kept minimal. DBP is designed
for single-writer multiple-reader communication for tasks that are scheduled based
on priorities and execute on single-core processors. DBP uses wait-free communication
scheme and is designed to optimize the memory demands required to preserve the
data flow and data stability between tasks. DBP is dynamic, i.e., the access decisions
to buffer elements are taken during run-time at every task release, and centralized, i.e.,
buffers are global and all shared among tasks. Buffer elements are occupied by reader
and writer tasks during complete execution up to the next release of the task. Similar
to NBW [24], DBP ensures that reader and writer tasks do not operate concurrently on
the same buffer elements at the same time. It is shown to be optimal [10] in terms of
buffer usage and the number of buffer elements required to preserve the semantics.
In DBP, a buffer is an array that contains different versions of the same data element,
which are accessed by tasks in different points in time.

In DBP, buffer elements are assigned to reader and writer tasks based on their priority
ordering. The protocol distinguishes between higher-priority and lower-priority
reader tasks and the writer task of a data element S;. Lower-priority tasks are reader
tasks that have a lower priority than the writer task. Similarly, higher-priority tasks
are reader tasks with higher priority than the writer task. A higher-priority reader
task accesses only the data produced by the previous instance of the writer task and a
lower-priority reader task accesses the current produced data by the writer task or the
previous one, depending if the lower-priority reader task starts its execution before
the writer task. Sofronis et al. [10] defines the maximal amount of buffers required for
a data element S; equal to |LR| + 2, where LR defines the amount of lower-priority
reader tasks. The LR is divided in lower-priority tasks without a unit delay LR! and
with a unit delay LR? [10]. The two more buffer elements are required because one is
needed to store the value used by the higher-priority tasks and one to store the current
value written by the writer task.

48 | Inter-Task Communication Design

7, Y

SB

™ t= = tm t

0 \ 3 \ 5 |

1 ! 4 |

?0?‘ ¢ ?2 ‘
/0% i I o G s o S = T = T = o O o T
{0y i s [o i e o [v s S
T S

Figure 3.2: Example of buffer accesses with DBP for one writer task T, and two reader tasks
T,0 and T,1. The buffer S? has three elements. A buffer element changes its value each time
it is written by the writer task Ty,. The write operations are depicted by the red solid arrows
and the read operations by the green dashed arrows. The first instance of the higher-priority
task T} reads the initial data. The green marked blocks indicate execution time of tasks. The
gray boxes indicate the start delay of tasks and the light-green boxes the preemption time.
Task T;; is interrupted in every instance wither by Ty, or T,o. Priorities have the ordering
1 < Ty < Trro. The visualization of buffers is inspired by figures in [13].

The protocol tracks and grants accesses to tasks using pointer data structures. The
curr pointer is used to record the last written value by the writer task. It points to the
buffer element, in which the writer tasks writes during its execution. The prev pointer
is used to record the previous produced value by the writer task before the curr. An
array of pointers is kept to store the reference of buffer elements that are assigned to
reader tasks. These pointers are used by reader tasks during their execution. Buffer
elements are assigned to reader and writer tasks at their respective release times. A
read access on a buffer element is granted to reader tasks only if the writer task is
not concurrently writing at the same point of time. Multiple reader tasks are allowed
to read simultaneously the same buffer element. Higher-priority tasks have read
access only to buffer elements produced by the last finished writer instance, which
is referenced by the prev. A lower-priority task gets access to the buffer element
produced by the latest active instance, which is referenced by the curr, if it is in the list
of tasks with a unit delay LR'. These accesses are valid under the assumption that the
writer task terminates before the start of the lower-priority reader task. Otherwise,
if the lower-priority task belongs to the set of tasks without a unit delay LR?, then
it gets access to the buffer element pointed by prev. When a reader task finishes its
execution, the granted access to a buffer element is removed. At the release time of the
writer task, the pointer prev gets the value of curr and curr is assigned to the next free
element of the buffer, in which no reader task has an access at the same point of time.

Figure 3.2 shows an example of three tasks sharing one global data element S;. The
writer task Ty, writes the data every 4 ms, and the reader tasks T, and T} read the data
every 2ms and 5 ms, respectively. The priority ordering is defined as 7,1 < 71y < 0.
The 7141, 71w, and 71,9 define the priorities of T}, Ty, and Ty, respectively. The accesses

3.2 Related Work and Problem Analysis | 49

to the buffer are shown for all task instances up to the Hyper-Period (HP). In the
worst-case, three buffer elements are required, but because of oversampling not all
elements of S8 are used at the same point of time. Task T} has two consequent read
operations on the same buffer elements, e.g., the first and the second instance access
buffer element By [0]. Task T} is preempted by Ty and T, and reads after resume the
same buffer element as at start time.

The advantages of DBP are the ability to handle at run-time variations of the execution
times of tasks and the reduced needs for memory capacity to store global buffers.
DBP is designed to handle only fully preemptive tasks. But, in practice applications
contain subsets of non-preemptive tasks [35], which are designed to reduce the effects
that come from preemption. In order to apply DBP for these applications, special
handling of this use-case is required. An extension of the protocol is to treat non-
preemptive reader tasks as tasks with higher priority than the writer task. In this case,
the non-preemptive reader tasks consume data produced by the previous instance of
the writer task. DBP cannot be applied for multi-core processors because concurrent
read-write and write-write operations of parallel running tasks can cause unstable
data operations. This occurs because buffering decisions are taken in DBP based on
task priorities, which have no effect on the execution of tasks among cores.

3.2.1.3 Temporal Concurrency Control Protocol (TCCP)

Wang et al. [66, 67] provide different implementations of DBP for applications that run
on an Offene Systeme und deren Schnittstellen fiir die Elektronik in Kraftfahrzeugen (OSEK)
operating system. They propose the Temporal Concurrency Control Protocol (TCCP) as
an alternative approach of DBP, such that a constant time for searching a free buffer
element to assign to a writer task is achieved. TCCP is a non-blocking buffering
mechanisms as DBP but it has a different buffer assignment behavior compared to
DBP. TCCP uses the circular approach of NBW to assign buffer elements to a writer
task. The next buffer element is assigned to the writer task by increasing the curr
pointer. If the end of the buffer is reached, then the head of the buffer is used as the
next element. Compared to the FIFO circular buffering described in [64], the TCCP
assigns read accesses to reader tasks based on the DBP semantics.

Wang et al. [66] define an upper bound of the buffer size for DBP in case of multiple
active instances of writer tasks. In this case, k elements are necessary to store values
of prev active instances of writer tasks up to a time delay. The upper bound of the
buffer size is calculated as |LR| + k + 1, where one element is required to keep the
value that all higher-priority reader tasks read. Compared to DBP, in TCCP the upper
bounds of the buffer size is defined by the number of instances of the writer task that
overlap with the instances of the slowest reader tasks. They define the upper bound of
the buffer size of TCCP, considering multiple active writer instances, as (R;—wpﬂ +k,
where P, is the period of the writer, P; is the period of the slowest reader, and k is the
number of stored prev pointers up to a time delay.

50 | Inter-Task Communication Design

r.tmm tF tm t= ¢

Sy 0 [+ 3 |
2 i |

|
roiiiéiii?iiiiT
ﬂT:i:-ti:- t-:l'-:l t

| — >
8 12 16 20 t [ms]

4q--

Figure 3.3: Example of buffer accesses with TCCP for one writer task T, and two reader tasks
T,0 and T,1. The buffer S? has three elements. A buffer element changes its value each time
it is written by the writer task Ty,. The write operations are depicted by the red solid arrows
and the read operations by the green dashed arrows. The first instance of the higher-priority
task T} reads the initial data. The green marked blocks indicate execution time of tasks. The
gray boxes indicate the start delay of tasks and the light-green boxes the preemption time.
Task T;; is interrupted in every instance wither by Ty, or T,o. Priorities have the ordering
1 < Ty < 7. The visualization of buffers is inspired by figures in [13].

Natale et al. [68] and Wang et al. [69] improve the buffer size calculation of TCCP.
Wang et al. [66] show that TCCP requires less memory to store auxiliary variables and
takes less time to find a free element than DBP, but needs more buffer elements to
preserve the SR semantics. The buffer size in TCCP is defined based on periods of the
writer and reader tasks and not their priorities.

Figure 3.3 shows an example of the buffer schedule created by the TCCP for three tasks
sharing one global data element Ss;. The writer task Ty, writes the data every 4 ms,
and the reader tasks T,y and T, read the data every 2ms and 5 ms, respectively. The
priority ordering is defined as 71,1 < 7, < 71,0. The accesses to the buffer are shown
for all task instances up to the HP. Task T;, accesses circularly the buffer elements
starting from the first element to the fourth. In this example, TCCP requires four
buffer elements to preserve the semantics. As shown in Figure 3.2, DBP requires only
three buffer elements to ensure the semantics for this example.

Because DBP outperforms TCCP in terms of buffer size, this work use DBP approach
to design SBP and integrate LET semantics. Although, DBP can be extended to
handle LET semantics in multi-core processors, as shown in [66], it is complex to
implement, it requires additional memory capacity to store auxiliary data and due to
its dynamic nature accesses to the buffer schedule are unpredictable and hard to verify.
Extensive evaluation of buffer accesses is necessary to identify at run-time potential
violations of the time- and value-correctness. Therefore, SBP was designed as a static
and deterministic approach to implement LET semantics for multi-core applications,
optimize the memory requirements, and avoid the aforementioned drawbacks.

3.2 Related Work and Problem Analysis | 51

3.2.1.4 Data Stability in AUTOSAR Systems

Zeng et al. [70] provide an overview of mechanisms used to ensure data stability and
dataflow of AUTOSAR applications running in a multi-core platform. They describe
the explicit synchronization between the writer and reader tasks running on different
cores, such that data is accessed by tasks in the order write-before-read. This approach
is not practical because it must be ensured by scheduling, synchronization of cores
and task activation, and by timing properties of tasks such as offsets and periods. In
addition to the lock-based mechanisms [70], they describe the multi-core case of DBP.
In their approach, the dataflow and concurrency between writer and reader tasks that
execute on different cores are handled by synchronizing the activation of the writer
and reader tasks or by sending interrupt signals to the core on which the reader tasks
execute [70]. In this way, reader and writer tasks do not accesses concurrently the
same buffer elements and the read accesses occurs after the write. This approach is
not practical because it requires multiple synchronization interrupts between cores,
which increase the preemption overheads and reduce the execution performance.

Zeng et al. [71] propose optimization techniques for minimizing the memory re-
quirements of AUTOSAR applications. They provide methods to chose between data
stability mechanisms described in [70] and to reduce the amount of preemptions
by setting a preemption threshold for tasks, such that the usage of RAM and stack
memory is reduced. Compared to Zeng et al. [71], this work focuses on reducing
memory requirements by implementing a static buffering protocol that is independent
of scheduling and that offers dataflow determinism by means of LET.

In AUTOSAR, data stability is ensured by the implicit Sender-Receiver communication
[72], which sustains data stability through local buffering at runnable level. The Run-
time Environment (RTE) of AUTOSAR implements this communication and manages
the accesses to buffer elements. Local buffers are created for every runnable and for
every data element that they read or write. Runnables operate during execution on
the local buffers. The input data are read at runnable’s start time and outputs are
made available at runnable’s termination time.

3.2.2 Temporal Determinism

Henzinger et al. [7, 54] propose LET as a real-time programming abstraction to
guarantee deterministic data exchange between embedded applications. Only recently,
the industry has recognized LET as a mechanism to increase the robustness, time and
dataflow determinism of multi-core applications. The following sections provide an
overview of buffering mechanisms proposed to guarantee LET semantics and the
related work of LET regarding its applicability in automotive systems.

52 | Inter-Task Communication Design

3.2.2.1 Related work on LET

Hennig et al. [73] explore LET for potential benefits in migrating an existing legacy
powertrain system to multi-core platform, such that the single-core functional behavior
of the system remains unchanged and the application executes in parallel. They group
runnables to parallel tasks such that the LET size is decreased and the control delay is
minimized. They apply the TDL modeling platform [56] to generate LET tasks and
deploy them to cores. Migrating existing embedded applications to LET semantics
means defining the LET interval duration of each periodic task and implementing a
buffering protocol for data exchange between tasks at their LET boundaries.

Bradatsch et al. [74] propose an approach of assigning the duration of the LET interval
of producer tasks to be equal to task’s Worst-Case Response Time (WCRT), such that
the duration of end-to-end event chains is minimized. The produced data becomes
available earlier and the duration of the control flow is minimized. This approach does
not scale well with application changes. Deploying the system to different platforms
or changing the schedule and task-to-core allocation requires re-evaluation of WCRT
and re-assignment of LET duration. The calculations of WCET must be precise enough
such that LET determinism is not violated at run-time due to LET overruns.

Becker et al. [75] provide analysis of end-to-end event chains for multi-rate applica-
tions considering LET paradigm. They show that the data age increases when LET is
used. Martinez et al. [53] focus on minimizing the end-to-end latency of event chains
for tasks that use LET semantics, by aligning period overlaps between tasks. They
propose a heuristic to assign offset of tasks for reducing the latency and improving
task’s WCRT.

Biondi et al. [58] analyze methods to map LET buffers to memory components for
the Engine Management System (EMS) model provided in the FMTV challenge [76].
They optimize the normalized response times by minimizing the memory accessing
time. For that they use a genetic algorithm and Mixed Integer Linear Programming
(MILP) formulation to allocate variables to memories such that memory accessing
times are reduced. They provide response time calculation considering bounds of
the worst-case memory access delays by concurrent executing tasks. They study two
approaches of integrating LET in AUTOSAR, one as part of the RTE and the other as
part of application software in form of tasks.

Brandberg et al. [77] compare the LET with the implicit and explicit Sender-Receiver
communication of AUTOSAR and data consistency buffering at task level in terms
of task response time. Farcas et al. [56] generate the schedule of data accesses in
distributed communication considering LET semantics. They suppress sending of
messages that are not used by any consumer task. Ernst et al. [78] describe extensions
of LET for system-level communication between multiple Electronic Control Unit
(ECU)s. This work focuses on LET communication within one ECU.

3.2 Related Work and Problem Analysis | 53

3.2.2.2 Buffering Mechanisms for LET

In the classic definition of the Giotto language [7], the data exchange between tasks
takes place at the boundaries of their LETs through a mechanism that resembles the
PTP buffering protocol. In PTP, private global variables, referred otherwise as local
buffers, are necessary to store the version of data in which LET tasks read and write
during the LET interval. The filling and flushing of values from the private variables to
the global data elements, and vice versa, causes significant communication overheads.
During data exchange at the beginning and end of LET intervals, the concurrent ac-
cesses to the same variables are protected by software resources such as semaphores or
spin-locks [19], which increase further the communication overheads due to resource
consumption and blocking delays. Due to the fact that filling and flushing operations
are isolated at certain points in time, parallel data synchronization between cores can
occur, which leads to higher interference delays caused by arbitration and usage of
shared memory and bus.

Resmerita et al. [8] apply the LET semantics by using PTP for a legacy automotive
systems, where they focus on reducing the computational costs coming from LET.
They evaluate the optimization potential regarding the amount of buffers required
to guarantee LET semantics and show that the memory requirements for buffering
could be minimized if the amount of data elements that are exchanged via LET is
reduced. Hence, they configure implicit Sender-Receiver communication [46] for
data elements that are accessed in tasks with non-overlapping LET intervals and PTP
communication for the rest of them. Because LET is only applicable between periodic
tasks, the data exchange between sporadic and periodic tasks requires dedicated
handling. They handle this by flagging data elements computed and consumed by
LET periodic and non-LET sporadic tasks. The flagging is necessary to not discard the
output of sporadic tasks, which can be overwritten by LET tasks at the end of their
LET. If the output of sporadic tasks is flagged, then the content of data element is not
overwritten. Finally, through simulation they estimate the WCRT used to assign as
LET interval to tasks for reducing the control delays caused by LET.

Resmerita et al. [9] extend buffer analysis of [8] for legacy systems running in multi-
core processors. They apply their buffering analysis at two levels of design. In the
first step, they analyze the software application to collect data accesses that must be
buffered according to LET semantics. In the second step, they relax the LET rules and
use platform information such as scheduling and task-to-core mapping to prune away
buffers of data elements that are not required to be buffered. For instance, the data
accessed by tasks that execute sequentially and at higher priorities are not buffered as
per LET semantics, but accessed accordingly and preserve the LET constraint. They
consider event-triggered tasks to exchange data with time-triggered tasks and handle
its effects in their analysis. The challenge of their approach is that it does not scale well
with system extensions and future platform migrations. The buffering information
has to be recalculated, considering as well that the data elements that are not buffered

54 | Inter-Task Communication Design

would require again analysis to evaluate if they are value-safe. In contrast to [8, 9],
this work optimizes buffering requirements for LET through a wait-free protocol that
minimizes these overheads by design instead of software configurations.

Kehr et al. [4] propose the Timed Implicit Communication Protocol (TICP) for executing
an automotive system in parallel in multi-core processors. The TICP protocol is
compliant to the LET semantics and it differs from the PTP in the way how buffers are
stored and handled. In TICP global buffers are used to implement LET instead of local
buffers, in which the accesses to the buffer are performed at run-time based on time-
stamps attached to buffer elements. Tasks access the version of data in the buffer that
corresponds to an earlier time instant relative to the time the access is performed. The
drawback of the TICP is that it can suffer buffer overflows and requires verification
for evaluating whether the communication is time- and value-deterministic. TICP is
similar to our proposed SBP compared to the fact that both are global and centralized
buffering protocols. TICP uses timestamps to take buffering decisions and SBP uses,
as in DBP, the curr and prev pointers, which indirectly derive the time of produced
outputs. Compared to TICP, SBP is static, deterministic and planned during the design
time. The authors do not provide a description of the TICP algorithm. Therefore,
additional differences to SBP cannot be identified.

Kluge et al. [79] extends a multi-core operating system to support LET semantics.
They use the message passing communication on a network-on-chip (NoC) with time-
division multiplexing (TDM) arbitration. For LET communication they implement
a cyclic buffering approach, similar to FIFO [64], at the receiver node. A queue of
received messages is maintained in the receiving nodes. A buffer element in the buffer
queue stores the received data and is identified by the logical available time. In this
way, the receiving task consumes only the data with a logical time that correspond
to the start of its LET interval. The buffer queue stores all the data received during
the LET interval of the reader task and as well the last data received up to the start
of the LET interval of the reader task. Hence, the buffer size in the receiver node
is defined as [5—;1 + 1, where P, is the period of the receiving, i.e, reader task and
the Py is the period of the sender, i.e., writer task. The circular buffer in [79] differs
from the proposed SBP in several aspects. SBP is not designed for a message passing
communication, but is defined to integrate semantics for tasks that use a shared
memory to exchange data. SBP requires less buffers to preserve the LET semantics
because buffers are not created for each reader task, but are shared in different points
of time among reader and writer tasks. Hence, buffers are reused among tasks.

Beckert et al. [80] propose the double-buffering protocol for implementing the inter-task
communication between tasks that use the LET paradigm. This protocol works as
follows. Two versions of each data element are stored in a global buffer. One of
the elements is used by reader tasks and one by the writer task. Tasks access buffer
elements via dedicated pointers. The read pointer points to the data element that is
accessed by the reader tasks and the write pointer points to the data element that is
accessed by the writer task. The pointers are swapped at the end of writer’s LET such

3.2 Related Work and Problem Analysis | 55

that the readers can read the latest produced value at the beginning of their LETs. A
copy pointer for all reader tasks is maintained and is updated with the copy of the
reader pointer at the release of each reader’s LET interval. This protocol provides
invalid inter-task communication when the end of writer’s LET interval lays within
the LET interval of any reader task. In this case, the pointers could swap during the
time that the reader task is executing, which not only violates LET semantics but
also can lead to data stability issues and malfunctioning of the application software.
Therefore, the double-buffering protocol is applicable only for tasks in which the end
of writer’s LET corresponds to the end or start of the LET intervals of all readers. In
SBP, similarly to the double-buffering protocol, a global buffer is used to preserve LET
semantics. The difference is that SBP is not constrained by the harmony of periods
to provide a correct buffering behavior and, depending on the application, one to
several buffer elements are required in SBP to preserve LET semantics. Another
difference is that the double-buffering protocol assigns buffers at run-time by means
of pointer swapping and SBP assigns buffers statically at design time. Finally, the
double-buffering protocol cannot handle multiple writers of the same data element.

Beckert et al. [81] improves the drawbacks of the double-buffering protocol by en-
forcing the behavior of a ring-buffer, in which data is written in consecutive buffer
elements in a circular way as described in FIFO [64], NBW [24], or TCCP [66] proto-
cols. The double-buffering protocol with the ring-buffer behavior is referred in the
following as ring-buffering protocol. The authors do not describe how the double-
buffering ensures the ring-buffer behavior and how buffers are assigned to reader and
writer tasks. In our understanding, the buffer assignment is performed at run-time
by the LET Event handler, a concept provided in [81], similarly to the FIFO approach
described by Ntaryamira et al. [64]. Because buffers in the double-buffering protocol
are assigned to tasks at run-time, we infer that buffer assignment takes place as well
at run-time when the ring-buffer behavior is enforced.

The notion of global buffers is identical in the ring-buffering protocol as in the pro-
posed SBP originally published in [12, 13]. However, the SBP approach differs with the
ring-buffering protocol in several aspects. SBP assigns buffers to the writer and reader
tasks, not circularly, but based on the semantics of DBP. SBP is designed to reduce
the amount of buffers required to preserve the LET semantics. Unlike the circular
buffer assignment of the ring-buffering, SBP does not need a next buffer element to
assign to a writer task, but it reuses any previous buffer element not used by any
reader task during the LET time interval of the writer. Hence, SBP does not assign
the next buffer element to writer tasks as it happens in a circular buffering approach,
but it assigns a buffer element that has no read accesses during the writer’s LET
interval. If an available element is not found, then a new buffer element is assigned
to the writer task. Therefore, SBP requires less buffers, i.e., less memory to preserve
LET semantics than the ring-buffering. Furthermore, SBP reduces the buffer size by
suppressing the unnecessary writes, e.g., in case of under-sampling and in case of data
age constraints, which the ring-buffering cannot handle. Unlike the ring-buffering,

56 | Inter-Task Communication Design

buffers are assigned to tasks statically at design time to avoid the run-time overhead
for buffer assignment at the boundaries of LET.

Ogawa et al. [82] apply the double-buffering protocol [80] to integrate LET for power-
train applications running on a multi-ECU platform. In their version of the double-
buffering protocol, reader tasks operate on local variables and a copy-in operation,
as in PTP, copies the data from the read pointer to the local variables of each reader
task. The writer task operates on the writer pointer and the swap of read and writer
pointers is done as described in [80]. The authors describe the synchronized version of
the double-buffering protocol, in which the swapping of buffer pointers and copy-in
operations are distributed to multiple Control Processing Unit (CPU)s and are syn-
chronized to occur in the required order. As the authors state, the synchronization
is time consuming and causes buffering overheads. Therefore, in their proposed
asynchronous approach the swapping of pointers is avoided by enforcing tasks and
runnables to decide based on the current time and LET interval which of the pointers
to use. The extensions of the double-buffering protocol given in [82] improve the
drawbacks of its initial definition described in [80].

Biondi et al. [83] propose an approach of implementing PTP for synchronous tasks
with implicit deadlines. They allocate the copy-in and copy-out operations for exe-
cution at the beginning of LET and ensure that the copy-out operations take place
before the copy-in. This approach works well for tasks with implicit deadlines and
synchronous activation of tasks. But for tasks with constrained deadlines, special
handling is required for executing copy-out operations. They suppress the unneces-
sary writes by avoiding writing of the output to global data element for writer task
instances that have no reader instance. To avoid memory contentions during data ex-
change, they synchronize copy-in and copy-out operations among cores. That means,
no parallel copy-in and copy-out operations occur in their approach. Nevertheless,
this can lead to an increase of processing time due to synchronization, to an inefficient
use of processor utilization, and to an increase of tasks response times.

A buffering approach that focuses on reducing the memory and run-time overheads
of LET is introduced in [84]. The approach is based on dedicated local buffers for
reader and writer task. Outputs are written at the end of writer’s LET interval
to the local buffers of the reader tasks rather than to a global data element as in
PTP. To suppress unnecessary writes, the authors describe an approach to reduce
the number of copy operations at the end of LET intervals by avoiding publishing
outputs that are never consumed. Unlike PTP, copy operations take place only at
the end of writer’s LET interval. This approach is valid only for tasks with harmonic
periods and when the period equals the duration of the LET interval. Their approach
of suppressing writes is also effective for PTP. Therefore, the authors apply it in
PTP to handle the communication between tasks with non-harmonic periods. The
copy operations are mapped to execute in the context of computation tasks instead
of dedicated tasks. A major advantage of their buffering strategy is the explicit
synchronization of exchanging outputs at the end of LET intervals in case tasks have

3.2 Related Work and Problem Analysis | 57

bidirectional consumer-producer relation on different data elements. Like PTP, their
buffering strategy requires more memory space and causes run-time overheads at the
boundaries of LET intervals than SBP.

3.2.3 Summary of Related Work

A summary of the related work is given in Table 3.1. Only approaches that target
buffering mechanisms are compared in this table. Buffering protocols such as the
NBW [24], DBP [10], TCCP [66], and FIFO [64] use a global buffering methodology to
ensure SR semantics and data stability. They are designed to handle the single-writer
to multiple-reader communication of non-LET systems. The implicit Sender-Receiver
communication [46] of AUTOSAR enforces a local buffering approach to ensure data
stability. It defines rules that inquire buffering at the boundaries of runnable’s BET or
at the beginning and the end of the non-preemptive sections. The frequent buffering
operations induce run-time overheads, which increase the overall system’s utilization.
Less overheads are expected in the aforementioned global protocols because buffer
assignment occurs only at the beginning of task release times and not in multiple
locations within tasks” execution. Except of FIFO [64], the rest of SR preserving
buffering protocols handle only the inter-task communication between tasks running
on single-core processors. Zeng et al. [70] provides an extension of DBP for the multi-
core case. However, the proposed approach is impractical due to scheduling and high
synchronization effort between cores. None of the aforementioned protocols fulfills
LET semantics. However, they are used in the related work to derive new buffering
protocols that ensure LET semantics. DBP overcomes the rest of SR preserving and
data stability buffering protocols regarding the number of buffer elements required to
guarantee the SR semantics. Therefore, the proposed SBP is based on the DBP.

Related buffering approaches that support LET semantics, with the exception of the
work in [80-82], support multiple writer tasks. The main advantage of the proposed
SBP protocol compared to related works is that it provides zero communication time
at the boundaries of LET intervals, reduces memory demands for buffering, and
causes zero jitters on data sampling time. These jitters refer to the time difference
between the end time of LET intervals and the actual writing of output data. SBP
uses global buffers to preserve the semantics and to reduce the overheads. It ensures
zero communication time, i.e., zero buffering overheads by avoiding physical data
exchange and run-time buffer assignment decision at the boundaries of LET intervals.
In SBP, buffers are assigned to tasks at design time such that reader and writer tasks
have exclusive access on dedicated buffer elements throughout their LET intervals.
This is not the case for the approaches found in the related work.

The ring-buffering approach in [81] is most similar to SBP. The main differences are
that SBP requires less buffers to ensure LET semantics and uses the DBP approach to
assign buffers at design time, rather than circularly at run-time like the ring-buffer

58 |

Inter-Task Communication Design

5
Nal
g4
&
£
OQ
foi
g
Fa
N
o

Contribution

v

Kopetz et al. [24]

Sofronis et al. [10]

Wang et al. [66]

Ntaryamira et al. [64]

Zeng et al. [70]

AUTOSAR et al. [46]

Beckert et al. [80]

Beckert et al. [81]

Kehr et al. [4]

Ogawa et al. [82]

Kluge et al. [79]

Resmerita et al. [8]

Resmerita et al. [9]

Biondi et al. [83]

Haefele et al. [84]

el alal il N > x> x| xx| N emantj
Cs

B
Clole|e s Elojojojc|ooo(ojo]o “ffenhg

< NINTITSNT VY [X[V [%[>N [XX [%X X% ||\ peI’VI‘j[-

oxxx><oo\><><><><><o><\30a1ab[e

\\'\\\\\'\'\'\\\XX'\’\MultﬁCore

Table 3.1: Qualitative comparison of buffering mechanisms.
Legend: satisfied (v'), partially satisfied (o), unsatisfied (X), unknown (?), Global (G), Local

(L), or Mixed (M).

3.3 Point-to-Point Protocol (PTP) | 59

protocol. Furthermore, SBP reduces the amount of buffers by suppressing unnecessary
writes or writes that meet data age constraints. The former ones are used to provide
to reader tasks data of a certain age and to suppress the unnecessary writes for writer
jobs with unused outputs. The ring-buffering assigns buffers circularly at run-time,
similar to NBW [24], TCCP [66], and FIFO [64], which require more buffers than DBP.

Related works in [8, 9, 83] apply the PTP protocol to satisfy LET semantics. Unlike SBP,
PTP uses local buffers to integrate LET and requires more memory capacity to store
all variables because one global variable is still held in the shared memory to store the
latest produced output. In SBP, buffers are shared, except that tasks only access the
buffer element that satisfies the semantics of LET. Therefore, the overlapping of LET
intervals and timing parameters such as periods and offsets can reduce further the
amount of needed buffers in SBP. PTP is easy to integrate into automotive systems due
to its similarity to the implicit Sender-Receiver communication and offers advantages
such as handling of data exchanges between periodic LET and periodic, sporadic, and
a-periodic non-LET tasks without special handling of buffers. For this reason, PTP is
described and evaluated in this work as an alternative approach to integrate LET into
automotive systems.

3.3 Point-to-Point Protocol (PTP)

This section provides a detailed description of the PTP protocol, commonly used in the
related work as an approach to implement LET semantics in automotive applications
[9, 83]. This work applies the elemental design principles of PTP found in the related
work and enhances it with aspects that address system’s schedulability, scalability, and
stability of data exchanges. The characteristics and methodology of PTP are described
in the following sections.

3.3.1 Overview

PTP is a lock-based and a decentralized buffering protocol that uses local buffers to
preserve LET semantics. In PTP, every initial task T; € T that consumes or produces
a global data element S; gets a corresponding local copy of S, referred to as local
buffer S?, which task T; reads or writes during execution. These buffers are filled at
the beginning of a task’s LET and flushed at the end of its LET. Hence, the value of
the global data element is copied to the local buffer at the start of a task’s LET interval.
Task T; operates during execution on the local buffer and the produced data is copied
from the local buffer to the global data element before the end time of task’s LET
interval. In this work, the filling and flushing of the local buffers are referred to as
copy-in and copy-out operations, respectively. For every task T; € T one dedicated
copy-in and copy-out operation is defined for every accessed data element. A copy-in

60 | Inter-Task Communication Design

Release Deadline Release
A
Tf | weet” y
A
T; weet, v T
S
I7 | weet? v T
T T T : >
: : Time
- let; —————- ~ '
——————— P »

Figure 3.4: Composition of tasks into LET Start Tis, LET End TZ-E and computation T;. Com-
munication tasks TZ-S and TiE take each wcetl-s and wcetiE time to execute. The end of let; of T;
corresponds to the end of deadline D;. For tasks with LET interval /et; equal to their period P;
the write operation takes place before the release of the next job.

operation of a data element S; € S consists of two data accesses: one read of the global
data element S; and one write of the buffer S!. Similarly, a copy-out operation of a
data element Ss € S consist of one read of the buffer S and one write of the global data
element S;. If a task T; reads and writes the same data element Sg, then two buffers
are created, one for the reading operation and one for the writing. It is assumed that
reading the intermediate results stored in the write buffer at multiple points within the
task is a decision of the function developer and is independent of the PTP buffering
behavior and the number of buffers created. Hence, for each data element S; with Ny
reader tasks and Ny writer tasks a total of 2 *x (Ng + Ny) data accesses are added
in copy operations, in addition to the Nr 4+ Ny existing data accesses occurring in
computation tasks.

The PTP described in [9] assigns LET copy-in/-out operations of every task T; to
functions, which are on the other hand mapped to driver tasks. This work uses a
similar concept, with the difference that copy-in operations are not mapped to the
same driver task that contain copy-out operations. They are mapped to different
tasks for improving the schedulability of the system and for better load balancing
between cores. Resmerita et al. [9] use one dedicated driver task for every core. The
execution time of such task can get significantly large due to many copy-in and copy-
out operations, which makes it difficult to balance the utilization of cores by means of
task-to-core allocation during migration to different processors.

Figure 3.4 shows the composition of tasks after the PTP buffering is synthesized. The
computation task T; € 7 is associated with the LET Start T® and LET End T tasks.
Both TP and TF are driver tasks and are alternatively referred to as communication
tasks. In PTP, the task T; remains unchanged, except that it has access only to local
buffers. The task TP has a WCET of wcet?, which corresponds to the time required to
read input data, i.e., the run-time of copy-in operations. Task TF has a WCET of wcet£,
which corresponds to the time required to write outputs, i.e., the run-time of copy-

3.3 Point-to-Point Protocol (PTP) | 61

out operations. These times are also referred to as WCCT. In this work, the WCCT
considers as well the time to guarantee atomic read /write operations, i.e, consistency
using lock-based mechanisms. Tasks TZ.S and TF have the same timing attributes as T},
such as the period P;, the deadline D;, the LET duration let;, and periodic offset O;.

An example of a PTP implementation is given in Algorithm 1. Both the global data
element data and the local buffer data_buf fer are typically declared as global variables.
The LET copy-in function copylnData copies the value of the global data element
to the local buffer and the copy-out function copyOutData does the opposite. The
computation function computation operates on the local buffer.

Algorithm 1: Example implementation of PTP.
Input:
data — The global data element,
data_buf fer — The buffer element of data

1 Function copyInData (data, data_buf fer):
2 | data_buffer < data;

3 Function copyOutData (data, data_buf fer):
s | data < data_buffer;

5 Function computation (data_buf fer):
6 | data_buffer < data_buffer +1;

The mechanism of PTP is similar to the buffering approach of the implicit Sender-
Receiver communication of AUTOSAR, but with the difference that buffers in PTP
have a lifetime equal to the duration of LET intervals rather than the execution time of
computation runnables.

To fulfill LET semantics, driver tasks TZ-S and TI-E must execute close to the boundaries
of LET intervals and must finish before the end of LET. Task T? must execute close
to the start of task’s LET and must finish before the start of T;. The computation
task T; must execute at any time between the end of T? and the start of TF. Task
T; must terminate before the start of LET End TiE task. Hence, the execution order
of driver tasks TZ.S and TiE and computation task T; is, as indicated in Figure 3.4,
constrained as T? — T; — TF. For tasks with coinciding LET intervals, LET Start
tasks must finish execution before the start of computation tasks, which must finish
all before the start of LET End tasks. Biondi et al. [83] orders tasks TZ.S, TiE, and T;
as: TP — T? — T,, where the TF copies out the results of the previous job to the
global buffer before the reading of the current job takes place. This execution order
is scalable only if the LET duration is equal to the period. Although, the authors
state that this approach isolates memory contentions and controls memory traffic at
the beginning of the period when synchronized between cores, this is not optimal
if all these operations are handled by one driver task running on one core, because
the duration of the copy-in and copy-out operations can delay the execution of tasks
running on other cores. Furthermore, the memory contentions to shared memories are

62 | Inter-Task Communication Design

SO 1 T 21T 3 1 4 [5 [6 [7 [8 [9 [10 |

TWT‘T*LT*T—'T—'T'*T*T'—T—T'*Q

Sl LO__‘ 1 r 2 3 s 4 - 5 v 6 - - 8 9 - !0 I__________:

L) S R S N R S S AR T R

T, 5] [[i - T

S blu | 1 ‘ : 3 T 6 x\ 8 | :f:J

T, 4t/ — — — S
rF 11111ttt 111 17 © 7 17 17 17 1T T 1 >
0 4 8 12 16 20 t [ms]

Figure 3.5: Example of buffer accesses using PTP for one writer task T, and two reader tasks
Ty0 and T;1. The gray boxes represent the LET intervals of each job. The green and red arrows
indicate read and write accesses, respectively. The white boxes represent the global data element
S1 and the values it stores in different time intervals. The light blue boxes represent the local
buffers SZ}, S%, and Sfll of Ty, Ty, and T,1, respectively. The dashed white boxes indicate the
LET intervals and buffers of the first task instances of the next HP interval.

not fully avoided because memories are typically shared among all cores. Therefore,
to increase the schedulability, these operations are allocated to different tasks where
each computation task has its dedicated driver tasks. It should be noted that a LET
interval is associated with one computation task.

An example of data exchange using PTP protocol is visualized in Figure 3.5. During
execution, the writer task T;, writes and reads the local buffer SZ}. The value of the
global data element S; is updated at every instance of T;, right before the end of its
LET. The reader tasks T,y and T,; read during execution only their respective local
buffers S%} and S, which are updated with the recent value of S; at every task’s
release. The task’s release corresponds in this case, with the start of the task’s LET. The
first instance of T,(reads the initial value of S; and the first instance of T, reads the
tirst produced output by T;,. The following instances of T,y and T}; read the output
produced by the preceding instances of Ty, that have the end of LET smaller or equal
to the start of the reader’s LETs. For simplification, the composition of tasks into
driver and computation tasks are not shown in this example.

In PTP, the buffer size B of each signal Ss € S is as
Bs = Ng + Ny +1, (3.1)

where Nr and Nyy are the number of reader and writer tasks, respectively, and “1”
represents the global data element. Equation (3.1) considers the case of multiple
writers of signal S;. It is assumed that reader tasks, that are also writers of S, always
read the version of the global data element S; and not the locally produced value.

3.3 Point-to-Point Protocol (PTP) | 63

Equation (3.1) includes the global data element as part of the buffer size to estimate
the total memory needed to fulfill the LET semantics.

3.3.2 Consistency of Data Synchronizations

The copy-in operations execute in the context of LET Start tasks and the copy-out in
the context of LET End tasks. When executing LET Start and End tasks in parallel on
different cores, concurrent reads and writes of the same global data element could
occur. Hence, concurrent execution of copy-in/-out operations cause inconsistent
values of data elements. This means that during a copy-in operation, the LET Start
task reads a value that is concurrently written, i.e., the write operation is unfinished,
by a LET End task that is running on the other core. This is an issue only for data
element types for which writing operations are not atomic, i.e., writing takes multiple
processor cycles and does not occur instantaneously. The same applies if multiple
concurrent write operations occur on the same data element.

Inconsistent values of global data elements are caused as well by preemption of the
LET Start and End tasks. If a LET Start task is preempted by higher priority interrupts
during a non-atomic copy-in operation of a data element, then it could read, after the
resume, a different value of the data compared to the version before the preemption.
This occurs due to the fact that during the task’s preemption, the data is modified
by parallel executing LET End tasks or by LET End tasks with a higher priority than
of the LET Start task. If a LET End task is preempted during a non-atomic copy-in
operation of a data element, the parallel running LET Start task could read during the
copy-in operation an inconsistent value of the data.

An example of driver tasks TP and TF that operate concurrently on the same data
element S; is shown in Figure 3.6. In Figure 3.6, tasks T? and T} execute in parallel on
different cores and read/write concurrently the data element Sy. After 1 ms, T? reads
an incorrect value of S; because TkE modifies the rest of the bytes of S;. In Figure 3.6b,
tasks T? and TF execute on same core. Task Tf has a higher priority than T? and
preempts TiS at time 1 ms. After the resume, task TI-S reads an incorrect value of Sy
because TE modified the rest of S1’s bytes while T® was in preemption state.

This work ensures instantaneous and atomic copy-in/-out operations by enclosing each
operation within one critical section. In a typical embedded Operating System (OS),
these sections are implemented by disabling interrupts and by using OS resources,
i.e., spin-locks or semaphores [19]. The protected copy-in/-out operations at the
boundaries of LET are denoted as data-synchronizations. Although critical sections
guarantee consistent data-synchronization at the boundaries of LET, they increase the
run-time of LET Start and End tasks. Disabling of interrupts and requests/releases
of resources take a considerable amount of time because the OS has to synchronize
among cores and check which resources are being used. Additionally, the accesses to

64 | Inter-Task Communication Design

s, LI s LLLLLI
TiS C, TiSTvI | I' | G
R s Y v S

T T 1 > T T 1 >
0 1 2 3 t[ms] 0 1 2 3 t[ms]
(a) Non-atomic parallel operations. (b) Non-atomic preempted operations.

Figure 3.6: Data consistency issues of copy-in/-out operations of non-atomic data elements.
The data element Sy is not atomic and requires multiple processor cycles per read and write.
Task T’ executes the copy-in operation of data element S; and T performs the copy-out
operation of data element S;. The green arrow indicates a read access and the red arrow a write
access.

resources such as spin-locks are not always granted immediately. In case of parallel
copy-in and copy-out operations of the same data element, execution delays in form of
active waiting times occur if the resource is used by other tasks on other cores. If the
resource is not available, the task spins actively for the lock until it is available. These
delays can increase with the increase of the amount of parallel executing copy-in and
copy-out operations of the same data element.

In this work, OS resources are used to protect parallel read-write and write-write
operations of the same data elements. Spin-locks are applied to every data element
that is accessed by at least two LET communication tasks executing on two different
cores. Spin-locks are not added to every copy operation but only to the ones that
could have potential concurrent read-write and write-write operation of the same data
element on different cores. This optimization decreases the run-time overheads caused
by accesses to these resources at certain degree. The upper bound of the number of
spin-locks added for this purpose equals the number of data elements. This is defined
under the assumption that a concurrent, i.e., parallel copy operation exists for every
data element. In each copy operation two spin-lock accesses occur, one for requesting
and one for releasing a spin-lock. Hence, for each data element S; with N reader
tasks and Ny writer tasks a maximum of 2 * (N + Nyy) spin-lock accesses are added
to preserve consistency of all accesses of Ss occurring in copy operations.

Because LET communication tasks are typically configured to execute non-preemptively,
interrupts are not disabled and enabled before and after copy operations. This op-
timization is used under the assumption that in case LET communication tasks are
preempted by urgent interrupts they are interrupted shortly or between release and
request of different spin-locks. Additionally, in order to avoid deadlocks, nested spin-
locks are not allowed. Otherwise, long preemption times could cause long waiting
times for the spin-lock to be available to the parallel running tasks on other cores. This
time is equally increasing to the time that the preempted tasks remains preempted,

3.3 Point-to-Point Protocol (PTP) | 65

and in the worst-case it can lead to deadline violations of the parallel running tasks on
other cores and degrade execution’s performance of the system. Therefore, in such
circumstances the disabling of interrupts is mandatory. Another way to control further
the overheads involved during data-synchronization is to avoid the preemptions and
the number of parallel occurring copy-in and copy-out operations. One way is through
Time-Triggered Scheduling (TTS), which allows to control task’s execution at design
and target execution. Hence, the schedule of tasks for all cores can be constructed
such that communication tasks with concurrent copy-in and copy-out operations of
the same data element do not execute in parallel. However, this would result in an
under-utilization of cores and long start delays for computations tasks.

3.3.3 Jitters of Data Synchronizations

In LET, the communication between tasks is deterministic in the sense of known
dataflow, communication delays, and end-to-end delays. These times are predictable
and identical in any running platform. Nevertheless, this statement do not entirely
hold in PTP because PTP does not fully eliminate the jitter of produced data. This
occurs due to the fact that the time of data exchanges that occur at the boundaries of
LET intervals is not zero as assumed in LET. Additionally, extra delays occur in the
time of produced results because multiple copy-in/-out operations are scheduled and
executed at the boundaries of LET intervals. The data-jitter defines the time between
the end of producer’s LET interval and the actual time that outputs are made available.
Although jitters could occur as well at the beginning of the LET, they are irrelevant for
computation tasks as long as copy-in operations finish execution before computation
tasks start running. However, the advantage of PTP in automotive applications,
compared to when LET is not applied, is that it provides bounds of communication
and end-to-end delays, which are upper bounded by the end time of the LET interval.
These bounds depend on the platform and must be evaluated each time the system’s
design changes. This drawback of PTP is addressed by SBP.

3.3.4 Run-time Overheads

In PTP, the buffering run-time overheads, annotated as Optp, consist of the processor’s
utilization of copy-in and copy-out operations executed at the boundaries of LET
intervals. It is defined as

weet? + weetk
P; !

Optp = Z

VT,eT

(3.2)

where T; is the computation task, and wcet? and wcett are the WCETs of driver tasks
TP and TF of T;, respectively.

66 | Inter-Task Communication Design

To formally define the buffering run-time overheads of PTP, the following definitions
are given. Let SR = {S,|r € N} and S}V = {S,|w € NT} denote respectively the set
of global data elements that are read and written by task T;. For each data element
S, € SIR and S, € Slw accessed in T;, their respective buffers SE and SZ, are defined. If
a task T; reads and writes the same data element, then S, and S, indicate the same
data element. However, in this case buffers S? and S!, are different data elements and
are still required to store two versions of the same data. Unique copy-in operations
are defined for each S, € SR and unique copy-out operations are defined for each
Sw € SIV. The cp!" annotates the copy-in operation of data element S, € SR and cp%!

the copy-out operation of Sy, € S!V.

The execution time duration of a copy operation is defined by several time delays. The
definition of these delays is a formal description of the elements affecting the WCETs
of the copying operations only, and not an exact calculation of the WCET values. For
every data element S, € SK read by task T}, the time required to read S is defined
as a memory access delay Ad, and the time delay occurring due to bus and memory
interferences during the read operation of S, is defined as an interference delay Id,.
Similarly, for every data element S;, € S}V written by task T}, the memory access delay
Ady and the interference delay Id,, are defined. Interference delays depend on the bus
scheduling and the memory traffic caused by simultaneous accesses between tasks
running in parallel on different cores. The read and write memory access delays are
assumed constant and are calculated based on the data size of the data element and
on the amount of processor cycles it takes to read or write data of a given size. These
delays vary among processors and memory types. For every buffer S! and S, the
respective access delays Ad? and Ad?, and interference delays Id? and 1d%, are defined.

If consistency of copy operations is required to be ensured, then one unique spin-lock
is created for every global data element. The time delay for requesting and releasing
a spin-lock is assumed constant and is defined as dspye; and dsp,,;, respectively. In
every copy operation, a spin-lock is requested before and released after the operation.
If a spin-lock is used by another task during the execution of a copy operation, a
concurrent request of the same spin-lock leads to a time delay in the copy operation of
the requesting task. For each data element S, accessed in task T;, the wsp, defines the
waiting-for-spin-lock time delay occurring in the copy-in operation cpi. The wsp; is the
waiting time for the spin-lock to be released by any occupying task. The wsp,, defines
the spin-lock’s waiting time delay in the copy-out operation cpd of the element S
Figure 3.7 depicts the formal definition of wcet? and wcett of every task T; decomposed
into different time delays. The amount of copy operations that execute in the context
of tasks TP and TF is defined by the number of global data elements that a task T;
reads and writes. Therefore, the wcet? and wcetf of every task T; are defined as

weet? = Y. (Ad,+1Id, + Adl + 1d° + dspreq + dsprer + wspy),

vS,esk (33)

3.4 Static Buffering Protocol (SBP) | 67

dspreq | Wspr | Id; | Ad; 1d° | Ad dsprel dspreq | WSpw | Idw | Ady Id,?| Ad,° dspre
st T] e T]
— weet — ¢ weetE D

(a) Execution time of copy-in operations. (b) Execution time of copy-in operations.

Figure 3.7: Formal decomposition of time delays in copy-in and copy-out operations of tasks
T? and TF in PTP.

weett = Y. (Ady + Idy + Adb, 4 1d5, + dspreq + dsprer + Wspw).

VSwes (34

In case protection of a copy operation is not required, then the time delay for spin-lock
usage and waiting is not added in the calculation of wcet? and wcett. Similarly, if bus
and memory interferences do not occur during a data access then interference delays
are zero. The time delays wsp, and wsp,, are greater than zero if the requested spin-
lock is occupied by another task running in parallel on another core. These delays are
variable and depend on the occurrence of concurrent operations and on the occupation
duration of the spin-lock by occupying tasks. They are zero unless concurrent copy-in
and copy-out operations of the same data element occur. Considering zero interference
delays and zero spin-lock access delays, the wcet? and wcetF consist of only the time
required to perform a read and write operation.

3.4 Static Buffering Protocol (SBP)

This section describes the SBP buffering protocol as a resource efficient data exchange
mechanism to implement LET semantics for multi-core processors under plausible
memory requirements, zero communication time, and zero jitter of sampling data. It
should be noted that SBP is platform independent and can be used for single- and
multi-core systems using any scheduling mechanism. SBP is a derivative of DBP [10]
and it is designed to handle buffer accesses statically and according to LET semantics.
It is deterministic, a quality it derives from the LET paradigm and its static nature.

3.4.1 Overview

SBP is a static and centralized buffering protocol [12]. It creates for every data element
Ss a global array of elements, which is shared among several tasks. The buffer of S; is
notated as SE. The reader and writer tasks have exclusive access to dedicated buffer
elements at different points in time. SBP ensures that writer and reader tasks do not
access the same buffer element at the same time instant. Simultaneous accesses to

68 | Inter-Task Communication Design

Release Deadline Release
T; T weet, " weet; l T
! : : >
: : : Time
- let; —————~— - '
- P »

Figure 3.8: LET task composition in SBP. The computation task T; has period P; and the
duration of LET interval /et;. The LET interval of T; has a duration let; equal to the deadline
D;. The wcet!"* is the WCET for initializing the buffer indexes at the beginning of execution.
The wcet; defines the WCET of T;.

the same buffer elements are only allowed among reader tasks because data stability
is in this case not violated. SBP is platform independent, i.e, buffer decisions are
not taken based on priorities as in DBP but based on task periods, offsets, and LET
interval duration such that writing and reading operations in the buffer are performed
according to LET semantics. Hence, reader tasks of any priority and executing on
any core, read the version of data produced by a previous completed LET instance of
the writer task. Accesses to buffer elements are allocated by SBP at design time and
are stored in the buffer schedule. The schedule contains accesses to dedicated buffer
elements for all reader and writer jobs released within the HP interval. Task execution
and buffer accessing is repeated in identical order in each HP interval iteration.

SBP does not affect the original task composition of an application (defined in Sec-
tion 2.1.2.3). As Figure 3.8 shows, driver tasks are not necessary in SBP because in SBP
data exchanges do not physically occur at the boundaries of LET intervals as in PTP,
but it is handled through non-overlapping buffer accesses that are calculated at design
time. To align the task terminology of SBP with PTP, the task T; € 7 is referred in
SBP as computation task. SBP is designed to handle multiple writers of a data element.
Every writer job has its dedicated buffer element to access during its LET interval.
Jobs of the reader tasks read, in different LET intervals, outputs produced by jobs
of writer tasks that have the end of LET right before or equal to the start of reader
job’s LET. In case multiple write jobs have coinciding LET ends, the system designer
decides during the synthesis of the buffer schedule which output the reader jobs must
consume. Multiple writers of the same data element are not common in single-core
systems, but may occur in multi-core systems due to the allocation of runnables to
multiple cores.

Although SBP can be integrated in application’s code in various ways, this work
adopts an approach that reduces the amount of global auxiliary data required to
manage SBP semantics. The accesses to buffer elements are granted to tasks via
indexes, which store the position in the buffer array that jobs can access during their
LET interval. At the beginning of a task’s execution, thus, before the computation
starts, buffer indexes are initialized. The initialization operations take an amount of
WCET, notated for each task T; as wceti“dex, which is considered a buffering utilization

3.4 Static Buffering Protocol (SBP) | 69

overhead. The size of wcet!"¥* is defined by the amount of index accesses. An index
access refers to a write access on an index variable. Hence, for each data element S;
with Ny reader tasks and Ny writer tasks a total of Ng + Ny index variables and a
total of Nr + Ny index accesses are added, in addition to the Nr + Ny existing data
accesses occurring in computation tasks. In SBP, the WCET of task T; is the sum of
weete* and weet,;.

An alternative approach implementing SBP, instead of indexes, is to define the buffer
schedule as a global array variable instead of integrating it at the task’s code. Accesses
to buffer elements are enabled via set and get functions. The advantage of the first
method is that the schedule is stored in the stack instead of the global memory.
Furthermore, set and get functions take an amount of time to search on the buffer
schedule for the correct element to assign to the requesting task to read and write.
Although the initialization of indexes takes also execution time, it is more predictable
and easily upper-bounded. The use of the indexes isolates the buffering overheads at
the beginning of the task execution and simplifies their evaluation.

There are two ways to implement the granting of buffer accesses via indexes: the
local and the global programming styles. In the local programming style, the inter-
mediate produced value is stored in a local variable before it is written to the global
buffer. In the global programming style, the intermediate value is written directly
to the global buffer. In the local programming style, additional reusable memory,
i.e., stack is required to store local variables. In this work, it is used to implement
suppression of unnecessary writes to reduce the memory capacity required to store
global buffers. An example describing the difference between programming styles is
shown in Algorithm 2. Lines 12 to 14 show the writing operation of the global buffer in
the local style and Line 15 show the writing operation using the global programming
style. Line 2 to Line 11 show the initialization of buffer indexes. The task let_comp
reads and writes the global buffer data using the corresponding indexes b_index_r and
b_index_w, which are initialized at the beginning of the task’s execution. Values of
b_index_r and b_index_w are determined using the job counter, which is incremented
at each task execution. job is reinitialized at the end of each HP interval with the
maximum number of jobs max_jobs in a HP interval.

3.4.2 Buffering Algorithm

SBP uses the timing information of tasks such as periods, offsets, and duration of LET
intervals to assign buffers to all reader and writer jobs that are released in the HP
interval. Specifically, in SBP, buffering decisions are taken at every release time 7; ;
and absolute deadline time d; ; of each computation job J; ; of every task T; € 7. A
generic and formal description of SBP is given in Algorithm 3. The buffer schedule is
constructed for every data element S;. The buffer of S is defined as SE. Algorithm 3
generates for each data S, the buffer schedule B; = {bf,j|V]i,j,VTi € 1}, where bf,j

70

| Inter-Task Communication Design

Algorithm 2: Example of programming styles in SBP.

NN G »

© ®

10
11

12
13
14

15

16

Input:

job — The current job, max_jobs — the total number of jobs in the HP interval.
Output:

job — The next job, datalidx] — the idx™ buffer element

Data: The global buffer datal[l,..,Bs]

TASK let_comp (job, max_jobs) :

b_index_r < 0;

b_index_w < 0;

// initialize b_index variables

switch job do
case 1 do b_index_r < 0; b_index_w < 1;
case 2 do b_index_r < 3; b_index_w < 2 ;
case 3do b_index_r < 5;b_index_w < 4 ;

if job = max_jobs then
| job 0

else
| job « job+1;

// Option 1. Local programming style
tmp_data < data[b_index_r|;

tmp_data < tmp_data + 5;

datalb_index_w] < tmp_data;

// Option 2. Global programming style
datalb_index_w) < data[b_index_r] + 5;

return job, data[b_index_w);

3.4 Static Buffering Protocol (SBP)

| 71

Algorithm 3: Static Buffering Protocol (SBP).

N

= W

10

11

12

13

14

15

16

17

18

19

20

21

22

23

Input:

Utimes — The set of all unique ordered times,
Ry — The set of unique ordered release times,
Ejp — The set of unique ordered end times,

R
Tip

— The set of reader computation jobs released in one HP interval,

J Z\r/’ — The set of writer computation jobs released in one HP interval,

BE — The bulffer array of data element S
Output:

Bs

={v J V];,j} — The buffer schedule of the data element S;

Function sbp (Ut,-mes,th, E;,]fp,];Z\;,Bg?) :

curr < {} // The set of buffer indexes used by writers
uses < {} // The set of buffer indexes used by readers

prev < SB[0] // The index of the last produced output

foreach time t € Uy, do
// Release all used buffers before reassingment
// STEP 1: release buffer elements
if time t € Ep;, then
// LET end of writer tasks
foreach job J; ; €]};g withd;j =t do
prev <— currf"]-
CUTY <— curr \ {currff’].
// LET end of reader tasks
foreach]Ob]1"]‘ €]lljp with di,]' =t do

t uses < uses \ {(J; j, bf])}

// STEP 2: assign buffer elements
if time t € R, then
// LET start of reader tasks
foreach job J; ; €]}pr with ri; = t do

bf/]- < prev
L uses <= uses U{(J;, bi;)}

// LET start of writer tasks
: W ., _
foreach job J; ; €]hp withr;j =t do
currf-f’j <+ findFree (]ffp,]%,]i,j,uses, curr, prev, BB)

curr — curr U {currf"j
S w
bj; < curr;

return B,

72 | Inter-Task Communication Design

identifies the index of the buffer element of S that a job Jij accesses during its LET
interval. Algorithm 3 gets as input the set of unique timestamps Uy;y,s, the set of
release times th, and the set of end times E hp and uses them to construct the buffer
schedule B;.

Definition 3.1: Let Uyjy,s be the set of ordered unique times, and Ry, and Ey;, be the set of
all ordered release times and LET end times of all jobs that read or write data element S;,
respectively, and that are released in the HP interval of duration hp. The Uyipes, Ryp, and
Ey, are defined as

th = {ri,j|v]i,j /\] € [1/ni]/ \v/Tz € T}/ (35)
Epp = {dijIV]ij Aj € [Ln], VT; € T}, (3.6)
utimes = {th U Ehp}~ (3.7)

SBP uses prev and curr pointers to generate the accesses to buffer elements for every
job, a concept inherited by DBP. A set of curr variables, notated as curr = {curr{’;|V]; ;},
is recorded for every active job of the writer task to identify the buffer elements that
are assigned to writer jobs. The curr{’; indicates the buffer index assigned to the writer
job J;i ;. The prev variable stores the buffer’s index of last produced value by any of
the writer jobs. It points the buffer element of the last produced output and it is
updated at every LET end of writer jobs. A set of used buffer elements is maintained
for reader jobs, notated as uses, to ensure exclusive access on them and to disallow the
algorithm to assign these elements to concurrently executing writer jobs. In Line 5,
prev is initialized with the index of the initial value of the buffer. For each unique time
t in the timestamps Uy;,,,e5, buffer elements are assigned and unassigned for every job
Jij of T; € T that has release time r; j or LET end d; ; equal to t. Hence, SBP involves
two main steps for generating the buffer schedule, which are described as follows.

Step1: Unlock buffer elements — Before assigning buffer elements to the next released
jobs, all elements that are used by the jobs that finish their LETs at time ¢ are unlocked,
such that they can be assigned to the next released reader and writer jobs. Hence,
the condition in Line 8 must take place before the condition in Line 14. In the first
iteration of the loop in Line 7, the time f corresponds to the the smallest release time,
which means that before this time there are no jobs using any of the buffer elements.
Therefore, in this iteration no buffers are released in Line 13. In the next iterations
of the loop in Line 7, it is checked in Line 8 whether time t corresponds to the end
time of any LET interval, i.e., if f is in the set of LET end times Ey;,, then all reader
jobs that have the end time equal to t are iterated in Line 12 and their buffer elements
are unlocked in Line 13. Similarly, all writer jobs that have an end time equal to t are
iterated in Line 9 and their buffer elements are unlocked in Line 11. When ¢ is equal
to a writer’s deadline d; j, i.e., the LET end of writer job J; ;, the prev variable takes
in Line 10 the value of curr}’, i.e, the current value produced by the writer job. This
value is assigned to reader jobs, released at time ¢ or later, in Line 16. The value of
prev is overwritten by every writer job and the last value of prev belongs to the output

3.4 Static Buffering Protocol (SBP) | 73

produced by the writer job with the latest LET end time. In case t equals the LET end
of any reader job, in Line 13 the used buffer elements are removed from the uses to
make them available and assign them to writer jobs in Line 19. Because the uses of a
buffer element are stored for every job, Line 13 ensures that the uses by other tasks are
still in uses also when the uses of some reader jobs are removed from the uses.

Step2: Assign buffer elements — In Line 5, prev is initialized with the index of the
initial buffer element. In the first iteration of the loop in Line 7, time ¢ is equal to
the release time of the first released jobs. In Line 18, buffer elements are assigned
to writer jobs if time t corresponds to the release time of any writer job. In case the
time t corresponds to the release time of any reader job, the prev is assigned to all
released jobs, which in the first iteration of the loop in Line 7 the initial buffer element
is assigned to these jobs. In Line 17, each reader job and their accesses to the buffer
elements are added to uses to avoid assigning the index of the prev element to writer
jobs. In the next iterations of the loop in Line 7, if ¢ is in the set of release times th,
which is checked in Line 14, then all jobs that have the release time equal to t are
iterated in Line 15 and Line 18 and their buffer elements are assigned. When ¢ is equal
to the release time of a writer job J; ;, an available element for writing is searched
in Line 19 via the findFree algorithm and is assigned to the curr}’. variable. The writer
job J; ; writes on the buffer element with index curr{’ i until the d ij is reached. When ¢
is equal to the release time of a reader job J; ;, prev is assigned to J; ; for reading until
the end of its LET interval is reached. In Line 17, the job J; ; and its assigned index bs

are added in the list of uses. The algorithm ends after all times in Uy;y,e5 are 1terated

The findFree function is defined in Algorithm 4. It assigns to a writer job J; ; a buffer
element that is not used by any reader or writer job during its LET interval defined as
[ri,d; j]. Algorithm 4 reduces the amount of buffers by reusing buffer elements that
are never read by any reader job. This is enabled by assigning prev to a job J;; if it is
never read by any upcoming reader job. Line 4 checks if prev is already assigned to
a reader task. In this case, prev cannot be reassigned and an existing unused buffer
element is searched in Line 5 and Line 6. The condition in Line 6 checks for buffer
indexes that are not in uses or in curr and that are different from prev. If an unused
element is found, then the index is returned in Line 7. If prev is not assigned to any
reader task up to time r; j, then it is checked if it can be assigned to the current job J; ;.
Between Line 9 to Line 10, the Algorithm 4 searches for any writer job that produces an
output between the LET start time 7; ; and end time d; ; of J; ;. If an output is produced
by another writer job in this interval, then only reader jobs that have their LET start in
[ri,d; ;) are of interest. If such reader jobs exist, then prev cannot be used because it is
an output that is assigned in later iterations of Algorithm 3 to at least one reader job.
Otherwise, the prev is reassigned in Line 11, but only if there are no other writer jobs
with their deadline in the LET interval of J; ;. In case an available buffer element is not
found, in Line 12 a new element be is added to the buffer BZ and its index is assigned
to the writer job in Line 11. The size of B is increased each time the Algorithm 4 does
not find an unused buffer element to assign to a job J; ;. Note that in the first call of

74 | Inter-Task Communication Design

Algorithm 4: Searching for a free buffer element to assign to a writer job J; ;.
A buffer element is assigned to a job J; ; if it is not used by any reader or writer
task and if it does not store an output that is consumed by any future reader
job. The prev is reassigned if there are no reader jobs that can read the value
of prev.

Input:

] }fp — The set of reader computation jobs released in one HP interval,

] IL’\; — The set of writer computation jobs released in one HP interval,
Jij — The current writer job to assign a buffer element,

uses — The set of indexes used by reader jobs,

curr — The set of indexes assigned to writer jobs,

prev — The buffer’s index of storing the last produced output,

BJ — The buffer array of signal S

Output: The buffer index of an available element to assign to J; ;

2 Function findFree (];pr,]}:‘;,]i,j/ uses, curr, preo, Bf) :

3 | bs+ |BB|—1 // The maximal buffer index of BP at time
7’1',]'

4 if prev € uses then

// Search for an existing unused buffer element
5 foreach buffer index i € [0,bs] do
6 ifi ¢ uses \Ni # prev \i ¢ curr then
7 | return i
8 else
9 if prev ¢ curr then
10 if G—tJ]k,l S]Plzzp with USRS [1"1'/]', dl/])) N (ﬂ]m,n €]Z\; with

dm,n S (7‘1'/]', dl/])) then

11 L return prev // Reasign prev

// Otherwise, allocate be as a new buffer element
12 | BP «+ BBU {be + ¢}
13 return bs + 1

14

3.4 Static Buffering Protocol (SBP) | 75

A=ESR sl

SsB } | | 6 71 | ,'F,, I
EI::L 1 [1 3 [5 [7 |1 9 1,,,57,;,,1
- ! 2z, [y - L O ! 8 1o \ilile:ii‘
.t 3 3t g
7., Y — — — T

I I
0 4 8 12 16 20 t[ms]

Figure 3.9: Example of buffer accesses using SBP for one writer task T, and two reader tasks
Ty0 and T;1. The gray boxes represent the LET interval of each task instance. The green arrow
indicates a read access and the red arrow a write access. The light blue boxes represent the
lifetime of the global buffer S used interchangeably by Ty, T;o, and T, in different time-
intervals. The buffer content changes every time a new value is written. The horizontal red
and green bold lines show the usage lifetime of a buffer element. A green horizontal line
indicates that a buffer element is read by a reader job for the time interval indicated by the
length of the line. Similarly, a red horizontal line indicates that the buffer element is written by
a writer job. The dashed white boxes indicate the LET intervals and buffers of the first task
instances of the next HP. The visualization of buffers is inspired by figures in [13].

the findFree function, the buffer array B? contains only the initial element. After the
schedule is generated for the data element S;, the number of elements in BSB defines
the buffer size of S; in SBP.

An example of tasks exchanging data using SBP is shown in Figure 3.9. The example
shows one writer task T, and two reader tasks T,y and T,;. Tasks write and read the
data element S;, which in SBP is transformed to the array SE. The first job of reader
task T reads the initial value stored in S2[0]. At the beginning of writer’s LET, SBP
assigns to writer task Ty, the next available buffer element, in which no reader or other
writer task has a parallel access. Hence, the first job of T, has access to SB[1] during its
LET interval. The red horizontal line between 0 ms and 1 ms indicates that the buffer
element S2[0] is assigned to the first job of T,,. Furthermore, it indicates that task T,
writes value “1” at any point of time within [0 ms, 1 ms]. The duration of [0 ms, 1 ms]
corresponds to the LET interval duration of the first job of T;,. The lock of S5[1] is
released in LET end of T, which corresponds to the end of the red line between 0 ms
and 1 ms. Accesses to buffer elements are assigned for reader tasks in a similar way.
Because the release time of the first job of reader task T, corresponds to the end of
the first job of the writer task T, the first job of T,; reads the output produced by the
first job of Ty,. The green line between 1 ms and 3 ms indicates that the buffer element
SB [0] is assigned to the first job of T);. During this time, T,; reads the value “1” at
any time within its LET interval. As the Figure 3.9 depicts, except for reader tasks, no
concurrent accesses occur on the same buffer elements between reader and writer jobs.
This is as well indicated by the non-overlapping red and green horizontal lines. The
usage lifetime of buffer elements by a reader and a writer task equals the LET interval

76 | Inter-Task Communication Design

duration of the task. In applications with tasks whose LET interval duration is less
than the period, some time intervals may exist in which buffer elements are not used
by any task, as indicated in Figure 3.9 by the empty spaces between green and red
horizontal lines.

In each iteration of the HP interval, accesses of jobs to buffer elements are repeated in
the same order as planned in the buffer schedule. At the start of the next HP interval,
all jobs that read the initial value must read the last produced value of the previous
HP interval. But, the last produced value might not always be stored in the initial
element of the buffer. This means that if the last writer job in the previous HP interval
writes the output to any buffer element and not to the element where the initial value
is stored, then the first reader job of the next HP interval would not read this output
but any old output generated in the previous HP interval. To overcome this situation,
an Interrupt Service Routine (ISR), referred to as initialize ISR, copies the value of the
last produced output to the initial buffer element. The initialize ISR executes in the
initialization phase of the next HP interval. It copies the last produced values to the
initial buffer element for all data elements that require such data transfers. These copy
operations are constructed statically during the buffer allocations and only for data
elements that have the last value written in any buffer element except of the initial one.
In Figure 3.9, this copy operation is not necessary because the last produced output of
the previous HP interval is already stored in the initial buffer element.

In the worst-case, i.e., when initial buffers of all data elements must be refilled, two
additional accesses, i.e., a read and a write access take place in the initialize ISR for
each data element, independent of how many tasks accesses them. Hence, for each
data element S; with Ny reader tasks and Ny writer tasks a total of 2 data accesses are
added in the aforementioned copy operation, in addition to the Ng + Ny existing data
accesses occurring in computation tasks. Let wcet;,;; be the WCET of the initialize ISR.
The wcet;,;; represents the buffering overhead for re-initialization of buffer elements
and is defined by the total memory accessing time of the aforementioned added data
accesses. The initialize ISR, annotated as IR is executed between iterations of HP
interval. Its period is set equal to the HP duration.

The IR™! executes only in one core and handles buffer initialization of data elements
that are exchanged between tasks running in any core. Buffer initialization operations
in IR™ must lead to a stable state of data stored in buffer elements. Hence, IR
must not execute while computation tasks are operating on buffer elements. To avoid
data racing between IR and computation jobs of the same core, to IR™ is assigned
a priority higher than those of computation tasks. Nevertheless, the priority does not
avoid data racing of IR and computation jobs running on other cores. To handle
such a situation, several approaches are available. If tasks are scheduled via TTS,
then the isolation of IR™! is ensured by scheduling, i.e., by assigning a time-frame
to IR™* in which it executes without interfering with the execution of computation
jobs running on the same or on other cores. Additionally, computation jobs running
on any core are scheduled such that they only execute after the time-frame of IR
has finished. This approach is not applicable if tasks are scheduled via Fixed-Priority

3.4 Static Buffering Protocol (SBP) | 77

Scheduling (FPS). In this case, the core on which IR executes must be synchronized
with other cores until IR™" finishes the execution. One approach is to create for
each core a dedicated high-priority task, which wait actively for IR to set an OS
event at the end of its execution. These tasks are configured such that they execute
in a loop until the event that indicates IR"*’s termination is set. If SBP is applied to
asynchronous tasks, then in order to preserve correct execution between IR and
computation jobs, all computation jobs of the previous HP interval must finish their
execution before the start of the next HP interval. This is possible by constraining the
offsets and LET duration of computation tasks as

VT; € 1,0; € [0, Pi)<=>l€t,' < P, —O; \P; # O;. (3.8)

Hence, SBP is feasible for periodic synchronous and asynchronous tasks with implicit and
constrained deadlines that fulfill Equation (3.8). The assignment of offsets to values less
then the periods is done such that the expected dataflow between tasks is ensured.

SBP is designed for communication between LET tasks with purely periodic activation.
Due to its static nature, SBP cannot handle dynamic changes of the system at run-time
such as the mixed communication between periodic and sporadic or a-periodic tasks.
SBP requires that the behavior of a task’s execution is known at design time and
defined by attributes such as period, offset, and LET duration of tasks, which is not
the case for sporadic and a-periodic tasks. The correctness of SBP is highly sensitive to
unpredictable activation jitters of LET intervals and tasks. SBP is applicable for event-
driven AUTOSAR applications as long as these jitters are predictable, upper-bounded,
and considered during buffer schedule synthesis.

The static nature of SBP offers convenient verification of time and value correctness of
the exchanged data. This is because SBP has zero communication time and zero jitters
on data sampling at the boundaries of LET intervals, which ensures that the delay
between the writer’s output and the reader’s input is the time difference of the writer’s
LET end time and the beginning of the reader’s LET. At run-time, if tasks violate the
end of their LET intervals, then the buffer schedule of SBP is violated, which leads to
accesses of incorrect values by other tasks. One way to avoid incorrect SBP buffering
behavior in case of LET overruns is to forcibly terminate the task causing the violation.
LET interval overruns can occur in case of software malfunctions, poor scheduling
design, or when scheduling is generated under unrealistic bounds of WCET. It should
be noted that LET overruns violate the dataflow and timing determinism of LET,
regardless of whether SBP or PTP is used as the buffering mechanism.

The SBP’s buffering decisions are taken statically using Algorithm 3. The purpose
of calculating buffering decisions statically is to avoid execution overheads that are
caused by running the Algorithm 3 at run-time. This approach offers also the benefit
of calculating the exact buffer size and estimating precisely at design time the memory
requirements to effectively deploy LET systems. Nevertheless, SBP can be applied
to take buffering decisions dynamically by executing Algorithm 3 at the beginning

78 | Inter-Task Communication Design

and at the end of a task’s LET, such that buffers are assigned to jobs before they start
execution and are released at the end of their LETSs after they finish their execution.
In this case, buffering overheads occur at LET boundaries for searching, assigning,
and releasing buffer elements. The LET Dynamic Buffering Protocol (LDBP) refers to
the dynamic SBP to distinguish it from the DBP (described in Section 3.2.1.2), which
takes buffering decisions differently from SBP. In LDBP, offsets, and LETs of tasks are
not required to be constrained by Equation (3.8) because buffer decisions are taken
dynamically and the initialize ISR is not required to reinitialize buffers.

3.4.3 Buffer Size

The size of the global memory required to store SBP buffers of a data element S; is
defined as a multiple of the data size of S5 and the number of buffer elements required
to preserve LET semantics for S;. Unlike PTP, for SBP the exact number of buffers
is defined by the overlaps between LET intervals of reader and writer tasks and is
calculated by the Algorithm 3. The overlaps are defined by periods, offsets, and LET
duration of these jobs. For instance, if two computation tasks, one reader and one
writer of the same data element have non-overlapping jobs, then only one buffer
element is required for both, which is used interchangeably between them at different
time intervals. These overlaps can be reduced by changing the offsets or the duration
of LET intervals of tasks.

Figure 3.10 shows an example of three tasks and their accesses to buffer elements
as defined by Algorithm 3. In Figure 3.10a, tasks have synchronous offsets and LET
duration equal to their period. To preserve LET semantics, three buffer elements are
required. In Figure 3.10b, the LET duration is decreased, which reduces the overlaps
between jobs and results in a buffer size of two. Another benefit of reducing LET
interval duration is the decrease of data ages and end-to-end delays. As shown
in Figure 3.10b, the second job of T} reads the output produced by the second job
of Ty, instead of the output produced by the first job of T,. In Figure 3.10c, the same
task set is shown but by adding an offset to task T,y and reducing its LET duration.
In this case, three buffer elements are needed. This example shows the sensitivity of
end-to-end delays and of the buffer size of SBP to timing parameters of tasks such as
offsets, periods, and LET duration. This aspect of SBP provides the ability to control
and reduce the memory capacity required to preserve LET semantics, e.g., by the
optimal assignment of task timing parameters. In PTP, the buffer size is independent
on the timing parameters of tasks, but is defined by the amount of reader and writer
tasks. The buffer size for the example shown in Figure 3.10 is “4” for PTP.

3.4 Static Buffering Protocol (SBP) | 79

T 4 t t t t t t
s 0 e g s R |
7 1 \ 4 |
0 \ 3 \
T 4= t t t
r t t t t t
L L L L L L L L
0 4 8 12 16 20 t [ms]

(a) Synchronous offsets. LET interval duration is equal to the task’s period.

ot tt/m t/m /| t/m t/—ma ot

5

\ 4

[
0 4 8 12 16 20 t [ms]

(b) Synchronous offsets. LET interval duration is less than the task’s period.

T, * + t + | + + i)
N 0 [4 |
o \ \ 5 |
: 0 | ; | |
To Y + + i)
T + ¢t ¢t I
1T T T 1 | | 1T 1 | | ["
0 4 8 12 16 20 t [ms]

(c) Asynchronous offsets. LET interval duration is less or equal to the task’s period.

Figure 3.10: Example of reducing the buffer size and end-to-end delays in SBP through changes
of activation offsets and LET interval duration for one writer task T;, and two reader tasks
T,0 and T;1. The gray boxes represent the LET interval of each task instance. The green arrow
indicates a read access and the red arrow a write access. The light blue boxes represent the
global buffer S; used by Ty, T;o, and T, in different time intervals. The visualization of buffers
is inspired by figures in [13].

80 | Inter-Task Communication Design

AP R s s (AT R i S i
SSB‘ locBal

Sy

|
| [0 [* 2[4]
To 7 t—) To 7 —)
4 T, Y)

me T T T T

\S}

»

t [;Ils]

T T
8

S
no—

(a) Before suppressing writes. (b) After suppressing writes.

Figure 3.11: Example of suppressing unnecessary writes in SBP for one writer task T, and
two reader tasks T,9 and T,1. The gray boxes represent the LET interval of each task instance.
The green arrow indicates a read access and the red arrow a write access. The light blue boxes
represent the global buffer Si used by Ty, Tro, and T} in different time-intervals. Jobs of writer
task T, with LET interval marked in yellow produce an output that is not consumed by any
reader job of T,y and T,1. The writing of these jobs is suppressed such that they only write to
the local variable named local, which is indicated by the white boxes. The local variable has a
lifetime equal to the execution time of the writer job. The visualization of buffers is inspired
by figures in [13].

3.4.4 Memory Optimizations

SBP is designed to require less memory for buffers than PTP. This work introduces an
additional approach to further reduce the amount of memory required to store global
buffers that the SBP needs to preserve the communication between tasks according to
LET semantics. The amount of global buffers is reduced by suppressing unnecessary
writes of dedicated writer jobs. A produced output by a writer job is marked as an
“unnecessary write” when it is overwritten by another job of the same or of a different
task and is never consumed by any reader job, or when the system designer defines
through data age constraints that a dedicated task reads an older value of data instead
of the most recently produced one. In this work, writes are suppressed for both cases.

The suppression of unnecessary writes is performed during generation of the buffer
schedule. Suppressing a write operation in a writer job means that the job does
not write to any of the buffer elements but to a dedicated local variable. Therefore,
this optimization is only applicable when the local programming approach is used.
Due to local temporal variables, the local programming approach has higher stack
memory demands compared to the global programming model. Therefore, the local
programming approach is applied for data elements for which the suppression of
writes is possible and for which the memory required to store global buffers decreases.

An example of suppressing writes in case of under-sampling is shown in Figure 3.11.
The data element S; is produced by the writer task T, every 2ms and consumed by

3.4 Static Buffering Protocol (SBP) | 81

tasks T,9 and T, every 4ms and 8 ms, respectively. Figure 3.11a shows the buffer
schedule before suppressing the writes of jobs released at times O ms, 4ms, 8 ms
and 12ms. Figure 3.11b shows the buffer schedule after suppressing the writes.
As Figure 3.11b depicts, the jobs with suppressed writes write no longer to the global
buffer but to the local variable named local. The number of global buffer elements is
reduced to one from two compared to when buffers are not suppressed. In terms of
memory capacity, assuming that Ss has the size of 8 bits, the global buffer’s memory
is 16 bits without suppressing the writes and 8 bits with suppressing the writes. But
in the second case, 8bits are additionally required to store the local variable. The
difference is that the local variable is stored in the stack of the task, which is used
only during task’s run-time and is shared with other tasks at different executing times.
In this case, by suppressing writes the global memory for storing buffers is reduced,
but the stack size dedicated to these tasks is relatively increased. This approach is a
trade-off between the reusable memory at run-time, i.e., stack and the global memory.

In addition to the identified unused writes, the proposed SBP algorithm uses data age
constraints [59] to reduce the memory required for global buffers. Data age constraints
are defined in the Timing Extensions document of AUTOSAR [59], but in the context
of this work their definition and interpretation is adapted as follows. The data age
constraints of every data element Sy and reader task T; is denoted as d’ and defines
that each job J;; of T; reads any value of S; produced up to d. time relative to the
release of the job even if its not the most recently produced value. For instance, a data
age of 4ms of reader task T; means that every job J; ; of T; reads any value produced
between the time interval [r; ; — 4ms, r; ;. After all defined data age constraints are
resolved, then the resulted unused writes of Ss are suppressed. Such a design affects
the data flow between tasks and is applicable only if functional requirements are
tulfilled and if it is approved by the system’s designer. An example of suppressing
writes using data age constraints is shown in Figure 3.12. The buffer size for data
element Sg is decreased from three to two elements after suppressing of the writes
using the data age constraint with duration of 3ms for both reader tasks T; and T),.

The suppressing of writes through data age constraints does not always guarantee that
the buffer size is decreased. This is because some overlaps of LET intervals between
reader and writer jobs are unavoidable also when data age constraints suppress the
writes in some writer jobs. An example of such a situation is shown in Figure 3.13,
where the suppressing of the writes does not decrease the number of buffer elements,
compared to non-suppressing of the writes. This occurs because the first job of the
reader task T; reads the initial value, which can never be suppressed. During the time
interval of this job, the first writer job of task Tj requires an additional buffer element.
The output of this job is not suppressed because it is required by the second job of T;
executing in the next HP interval. However, the impact of suppressing unused writes
using data age constraints is higher in asynchronous tasks or task sets with more than
one reader task and more than two buffer elements. This work assumes that data ages
are valid and lead to some degree of buffer size minimization.

82 | Inter-Task Communication Design

3
N
N
R
N
N
o
IR

()
(9]

INES)

<3

(a) Before suppressing writes.

;= dl — 5 ;)
——d/ — > = d; — ——d/ —>

ot bt b ot
o

(- 1tr 1t 11t 1 > 17T 1717 7
0 4 8 12 t[ms]

(b) After suppressing writes.

Figure 3.12: Example of suppressing unnecessary writes in SBP for one writer task Ty and two
reader tasks T; and T,. The suppressing of writes is based on data age constraints d’ and d,
which have a duration of 3 ms. The gray boxes represent the LET interval of each task instance.
The green arrow indicates a read access and the red arrow a write access. The light blue boxes
represent the global buffer S used by Ty, T;, and T, in different time-intervals. Jobs of writer
task T; with LET interval marked in yellow produce an output that is not consumed by any
reader job of T; and T,. The writing of these jobs is suppressed such that they only write to
the local variable named local, which is indicated by the white boxes. The local variable has a
lifetime equal to the execution time of the writer job. The visualization of buffers is inspired
by figures in [13].

3.4 Static Buffering Protocol (SBP) | 83

dys =3 ms
2T

T, +3 7

SSB Buffer

initializat ion
g)
1, 0 [t]

T, =

T T T 1 >
0 4t[rns]

Figure 3.13: Example of suppressing unnecessary writes in SBP for one writer task Ty and one
reader tasks T;. The suppressing of writes is based on the data age constraint d., which has a
duration of 3ms. The gray boxes represent the LET interval of each task instance. The green
arrow indicates a read access and the red arrow a write access. The light blue boxes represent
the global buffer S; used by Ty and T; in different time-intervals. The second job of the writer
task Ty, with LET interval marked in yellow, is suppressed considering the data age constraint
d.. The job writes during execution on the local variable named local, which is indicated by
the white boxes. The suppressing of the write does not decrease the number of buffers. The
local variable has a lifetime equal to the execution time of the writer job. The dashed white
boxes represent the LET intervals of the first task instances of the next HP interval. The red
line between the first and the second buffer element of S indicates the buffer initialization at
the start of the next HP interval. The visualization of buffers is inspired by figures in [13].

The suppressing of unnecessary writes without data ages is an additional optimization
to the one described in the findFree function, defined in Algorithm 4, in which the
buffer index of a prev pointer is reassigned to a writer task if no upcoming reader jobs
exist that read the output stored in the buffer element pointed by prev. A detailed
description of the approach of suppressing the writes with and without data ages in
SBP is given in [12]. If for a data element a write is suppressed in a writer task T;,
then one local variable is created for T;. The size of a local variable is the same as the
size of the data element for which the write is suppressed. Therefore, the amount of
local variables resulting from suppressing of the writes is defined by the number of
writer tasks that have suppressed writes and the amount of data elements that are
suppressed. For each data element S; with Ny reader tasks, Ny writer tasks, and
N{N writer tasks with suppressed writes a total of 2 * er/v data accesses are added in
copy operations of local variables, in addition to the Nr + Ny existing data accesses
occurring in computation tasks. A copy operation of a local variable consists of a read
access on a local variable and a write access of a buffer element. Copy operations
occur at the end of writer task’s execution.

84 | Inter-Task Communication Design

3.4.5 Run-time Overheads

In SBP, the buffering run-time overheads consist of the processor’s utilization for
initializing indexes at the beginning of each task’s execution, refilling of initial buffers
at the beginning of each HP interval, and copy operations on local variables in case of
suppressed writes. The wcetf”dex denotes the WCET of initializing indexes at the start
of a task T; and the wcet;,;; defines the WCET of buffer initialization at the beginning
of the HP interval with duration /p. The value of wcet"¥* is influenced by the length
of the buffer schedule, i.e, the amount of jobs released within one HP interval and the
number of data elements that are read and written by the task. The higher the number
of jobs of a task, the more buffers must be initialized inside the task and, hence, the
higher gets the run-time for initializing indexes. Note that buffers are initialized for
all data elements that a task accesses during its execution. Therefore, the more data
elements are read and written by a task T;, the higher wcet!"¥* gets. The wcet!*“ is
the WCET of copy operations for the local programming approach. If a task T; does
not have suppressed writes, then the wcetf“”l is zero.

The buffer run-time overhead Oy, is defined as

wceté”dex 4 wceti.““l

Osbp: Z (P;)_'_

VT;et

wcet iy

hp

(3.9)

In the example of Algorithm 2, the wcetﬁ”dex is the execution time of instructions
between Line 2 and Line 11. The wcet%owl is the execution time for reading the local
data element in Line 14 and copying of the global data to the local element in Line 12.

The following definitions of wceté"d“ and wcetf“”l of each task T; and of the wcet;,;;
are only a formal description of the elements affecting buffering overheads of SBP,
and not an exact calculation of the WCET values.

Let S7 = {S;|r € N} and S? = {Sy,|w € IN"} denote, respectively, the set of global
data elements that are read and written by task T;. For every data element S, € S}
and S;, € S}’ of each task T;, the local variables for representing indexes are defined
as Idx, and Idxy, respectively. The time required to write an index variable Idx; is
defined as a memory access delay WAd!¥* and the time delay occurring due to bus and
memory interferences during the write operation is defined as an interference delay
1di4%. Similarly, the write memory access delay WAd4* and the interference delay
1d1%* of an index variable Idx;, are defined. The wcetﬁ”dﬁx of each task T; is defined as

weete* =y (WA~ 4 [d41%) 1) (WAJH* 4 [di9%) 1 ¢,

(3.10)
VS, €8] VSesy

where c is the worst-case execution time of the rest of operations during buffer initial-
ization. In the evaluation results of this work, ¢ is assumed as zero.

3.4 Static Buffering Protocol (SBP) | 85

The S;nir = {S¢|f € INT} denotes the set of data elements that must be reinitialized at
the beginning of the HP interval. For every data element S¢ € S;;;;, the time required
to read Sy is defined as a memory access delay RAdy. Similarly, the WAd defines the
memory access delay for writing a data element Sy. The time delay occurring due to
the bus and memory interferences during a read and write operation is assumed zero
because buffer initialization occurs on one core and other cores wait actively until the
initialization finishes. Therefore, concurrent accesses to buffer elements do not occur.
The wcet;,;; is defined as

wcetinit = Z (RAdf + WAdf) + tevent/ (3_11)
VSr€Sinit
where the tepenr defines the WCET for setting and clearing of events required to
synchronize cores during buffer initialization. If the TTS is used to schedule tasks,
then the event synchronization is not required because the schedule can be planned in
a way that other cores do not execute any task during buffer initialization. In this case,
the tepent is zero. The write and read accesses during buffer initialization and write
accesses of index variables are not protected by spin-locks. The index variables are
local in the task context and are assumed to require only one processor cycle to read
and write. Furthermore, no concurrent accesses to buffer elements take place during
buffer initialization. Therefore, data stability issues do not occur in both cases.

The S5 = {Ssw|sw € N} denotes the set of data elements that have suppressed
writes in task T;. Let RAds, and WAds, be the memory access delay for reading
and writing a data element Sy, € S;”. The interference delays during a read and
write operation are defined as Rlds, and Wldy, respectively. A local variable Sé‘;{j’ll is
defined for each Sy, € Si“. The memory accesses and interference delays for the read
and write of each local variable S/ are defined as RAdY%™, WAd!2e*, R14'9¢! and
WIdlc . If bus and memory inferences do not occur during the read and the write of
Slocal then RI1d'" and W1d' are zero. The same applies for RIds;, and WIdg,. The
wcetﬁocal of every task T; with suppressed writes is defined as

weet!?! = wcet!o (s) 4 weet!* (e) (3.12)

where weet!®! (s) and weet!*°"! (¢) are the WCETs of copy operations at the start and
the end of task T;, respectively. They are defined as

weet™(s) = Y (RAdgw + Rldsy + WA + WId%™),

v e (3.13)

weet™(e) = Y (RAAN + RIAY + WAdg, + Widsy).

sw
VS €SS

(3.14)

The access and interference delays of a data element Sy, € S are considered in
the calculation of wcet%oml (s) if the task T; reads and writes Ss,. Otherwise, if T; has
only writes Sy, then the delays are not considered. Copy operations in the context

86 | Inter-Task Communication Design

of writer tasks with suppressed writes are not needed to be protected via spin-locks
because concurrent accesses do not occur for local variables and buffer elements.
Local variables are private variables for each task and are created to apply the local
programming approach. Additionally, the update at the end of task’s execution occurs
exclusively to a buffer element that is assigned by SBP.

3.4.5.1 Heuristic of Data-to-Memory Allocation

In typical multi-core memory architectures, the accessing delays of local memories
are lower when data are accessed by the local core of the memory and higher when
accessed by other cores. Similarly, the delays of accessing shared memory is higher
than accessing the local memory of the core. Therefore, to reduce memory access
delays caused by reading and writing a data element, the smallest-accessed-memory-
delay heuristic to allocate data elements to memory components is used. The heuristic
allocates data elements to memory components as follows. Every data element S;
accessed by any core is allocated to the memory component in which it causes the
lowest access utilization. The access utilization of a data element S, is calculated
for every core and every memory component because accessing delays of Ss by
tasks running on different cores is different depending on where the data element is
allocated to. A data element can be accessed by several tasks at a different accessing
rate and frequency;, i.e., period. For instance, task T; accesses data element S, three
times during its execution (the accessing rate) and every 1 ms (the period). Tasks are
mapped for execution to different cores. Let U}, ,, be the access utilization of data
element S;, which is mapped to memory M,, and accessed by all tasks running on
core C,, then

s, = Z rate; *Pa?elayin , (3.15)

VT;eT;, !

where T, is the set of tasks that run on core C,, and access data element S;, rate; is the
amount of times that S, is accessed by task T;, and delay;, is the memory accessing
time of S;. The value of delay;, depends on the size of data element S; and the
accessing delay of memory M,,. The heuristic allocates data elements to memories
such that the lowest access utilization is caused by accessing the data elements by
tasks of all the cores. Hence, the data element S; is allocated to memory M, if the total
access utilization } . U, ,, is the smallest among total access utilization values of all
memory components. If M,, has no capacity, then the next memory with the smallest
total access utilization is considered to allocate the data element. Data elements with
the highest access utilization are allocated first.

Memory and bus interferences occur when multiple tasks attempt to access concur-
rently the same memory and bus component, causing in this way interference delays
to each-other. These delays are not considered by this heuristic because concurrent ac-
cesses cannot be evaluated without exact definition of every task’s instruction, which
is not possible when WCET is used to represent the total task’s instructions. However,

3.5 Evaluation | 87

this heuristic offers the possibility to reduce the memory accessing times of SBP buffers
and the memory accessing time of data elements by LET driver tasks of PTP protocol
to an extend. Therefore, it is applied after the SBP and PTP buffer synthesis.

3.5 Evaluation

This section describes the evaluation of the introduced LET buffering protocols for au-
tomotive applications. The performance of both protocols is evaluated using synthetic
benchmarks and an industrial EMS model provided in the FMTV challenge [76]. The
synthetic benchmarks are performed using models with characteristics of industrial
applications. The following aspects of the PTP and SBP protocols are evaluated.

1) The global and the stack memory size required to store data and buffer elements
created by each protocol is evaluated. The global memory size refers to the
global memory capacity required to store global buffers, including global data
elements for PTP. The stack memory size refers to the stack capacity required to
store index and local variables.

2) The run-time overheads caused by buffering decisions for each buffering pro-
tocol to preserve LET semantics are observed. In PTP, these overheads consist
of the processor’s utilization of copy-in and copy-out operations at the bound-
aries of LET and the execution utilization of data-protection operations used to
preserve stability of buffering. In SBP, they consist of the processor’s utilization
of initializing indexes at a task’s initialization and refilling of initial buffers at
the beginning of each hyper-period. In case of suppressed writes with local
programming approach, the run-time overheads include the time required to
copy inputs to local variables and copy outputs to the assigned buffer element.
The formal definition of overheads for PTP and SBP is given in Section 3.3.4
and Section 3.4.5, respectively. In this evaluation, these overheads are estimated
using simulation results. This means that the actual overheads are reported
by the simulation and not by WCET analysis. To improve the run-time delays
caused by memory accesses, the global data elements and buffers are allocated
to memories by using the smallest-accessed-memory-delay heuristic.

This evaluation is based on the simulation of application’s buffering and execution
behavior using the TA.Simulation option of TA Tool Suite [85] of Vector Informatik
GmbH !, which is an industry proven tool for model-based simulation of embed-
ded applications. The TA Tool Suite was extended to synthesize LET buffering of
automotive applications and to simulate them using the TTS and FPS strategy.

lwww.vector.com

88 | Inter-Task Communication Design

Period (ms) Chassis (# tasks) EMS (# tasks)
1 4 2

2 4

25

5

10
20
50
200
1,000

N1 =

N | N |~ |~ | DN]|

Table 3.2: Parameters of tasks. The EMS models have a hyper-period of 1s and the Chassis
models have a hyper-period of 10 ms.

Attributes Values
Data Elements (#) 100 - 5,000
Data Accesses (#) 500 — 25,000
Data Size (bit) 8 — 256

Table 3.3: Parameters of data elements.

3.5.1 Synthetic Benchmarks

The main goal of the synthetic benchmarks is to identify the memory and the utiliza-
tion costs of SBP and PTP considering several characteristics of software applications.
Because the amount of data elements and data exchanges between tasks have the
highest impact on the buffering run-time and memory overheads, several synthetic
application models are generated that differ on the amount of data elements, data
accesses, and task periods. Both protocols are evaluated using application models
with attributes that characterize the ones of EMS and Chassis domains such as task
periods, the amount of tasks, the amount of global data elements, and data accesses.
For evaluation, applications of EMS and Chassis domains have been chosen for ex-
posing the impact that the granularity of the system has on the performance of both
protocols.

Models are generated randomly based on the uniform distribution of the parameters
depicted in Table 3.2 and Table 3.3. Fifty synthetic application models are generated
for each configuration. To isolate the effects of other application attributes, a fixed

3.5 Evaluation | 89

amount of tasks and fixed periods for all tasks have been configured. Each application
has 22 tasks. In general, the number of tasks configured in an application is highly
dependent on the design and optimization aspects applied by engineers during
software integration phase. The offsets of all tasks are zero and the LET interval
duration is equal to the period of the task. Although not included in this study, it is
expected that applications with offsets greater than zero and LET interval duration
less than the period produce similar results, with the difference that in PTP, due to
the reduced LET interval duration and the added buffering load, not all applications
would be schedulable. Tasks are scheduled using TTS and the schedule is constructed
using the Earliest Deadline First (EDF) heuristic.

The amount of global data elements for each model is in the range of 100 — 5,000 and
the amount of data accesses is in the range of 500 — 25,000. The typical communication
schemes observed in industrial applications are the single-writer single-reader and single-
writer multiple-readers communication. To increase the complexity to a certain extent,
models are generated to consider two writer runnables and three reader runnables for
every data element. Runnables are mapped to any task. A task can read and write
the same data element but in different runnables. Furthermore, a data element can
be read multiple times within the same task, i.e., in the context of different runnables.
Similarly, a data element can be written multiple times in the same task. Therefore,
each data element is written by 1 — 2 writer tasks and read by 1 — 3 reader tasks.

This evaluation considers data types of the size between 8 bit and 256 bit. The size of
each index variable of SBP is assumed as 8 bit. Unnecessary writes are suppressed in
SBP using also data age constraints. In this evaluation, 40 % to 52 % of data elements
have data age constraints of duration 3 — 7 times the period of the writer task. It is
assumed that enforcing data ages with higher duration that the defined ranges cause
to LET tasks to read intolerably old version of data.

Applications are simulated considering a hexa-core processor with execution fre-
quency of 200 MHz for each core. A processor with six cores is chosen based on the
assumption that the application is highly paralellized, i.e., tasks are distributed to
different cores and the energy consumption is kept low without loss of the perfor-
mance. Furthermore, due to higher parallel execution of tasks, the multi-core effects
on LET communication can be captured in this evaluation. The processor has one
shared memory, which is shared among multiple cores, and one local memory for
each core. The data size of the memory and bus is 64 bit. The accessing time of a data
element with size up to 64bit takes 5ns if the data is allocated to the local memory
of the accessing core. Otherwise, 10 ns accessing time is involved if the data element
of size up to 64 bit is allocated in the shared memory or in the local memory of other
cores.

The execution time for requesting and releasing a spin-lock is 200 ns. The execution
times of spin-lock accesses is implementation dependent and can vary among different
OSs. In this case study, due to the high amount of data accesses in a model, an

90 | Inter-Task Communication Design

—_ 400 [T T T T T T T ITITTTTTT T — 400 [T T T T T T T T ITTITTTTTTTTT
& e Unbuffered g e Unbuffered
> >
I | [«PTP NS | [«PTP o
< 300 || SBP-G " & 300 || SBP-G AAAA““
- °SBP-L - °SBP-L .
g 200| s ol g 200 e
v A‘AAM xxX xxxxx v ‘AAAA "xxxx;:poooo&;dx
2 AAAAAAA xxxxxx 2 AAAAA XXX(’;;:OOOOO

- S xx"x | [aadd xxxxx o) |
F% 1 OO AAAA‘::xxxxx;;;;OOOCOO F% 1 00 AAAA::xxxxggOOOOOO
< < N
n MHHHHH\HHHHHHHHH n %YTHHHHHHHHHHHHHHHHHH

%OO 15000 25000 %00 15000 25000
Data Accesses .14 Data Accesses .14
(a) Chassis (b) EMS

Figure 3.14: Shared memory capacity of the Unbuffered, PTP, SBP-G and SBP-L models for (a)
Chassis and (b) EMS applications.

optimized implementation of spin-lock handling is assumed. A pessimistic execution
time for accessing spin-locks causes in these models simulation results that have
deadline violations. If deadline violations occur, then the impact of spin-locks on the
buffering overheads cannot be properly evaluated.

A 44 % computation load is generated for every model, such that after the buffer
synthesis enough processing capacity is present for scheduling the system without
deadline violations. The computation load does not include the memory accessing
time of data elements. The load resulting from the memory accessing times is added
during the simulation.

The Unbuffered models contain the system without applying any buffering strategy
and considering that the global data is accessed at any time during a task’s execution.
Three models are created after buffer and schedule synthesis for every Unbuffered
model. The PTP models contains the application with the PTP buffer information. The
SBP-G and SBP-L models contain the buffered application using SBP with global and
local programming style, respectively. Models are simulated with a duration of three
times the HP.

3.5.1.1 Memory Evaluation

This section describes the evaluation results of the memory capacity requirements of
each buffering protocol. The results of this evaluation are also given in Section A.1.0.1
of Appendix A.

Evaluation results for global memory—Figure 3.14 shows the global memory capac-
ity required for SBP and PTP. The graphs depict the memory in KBytes required
to store global data elements and buffers for each protocol. The x-axis shows the

3.5 Evaluation | 91

number of unique data accesses of the initial, i.e, unbuffered models. Considering the
configuration of 5 runnables accessing a data element, i.e., 2 writers and 3 readers, the
data accesses depicted in this graph shows five times the number of data elements of
the unbuffered models. The number of data elements differs between models by 100.

Which global memory needs has each protocol? The global memory capacity is impacted
by the data size and the number of data elements or buffers that result after buffer
synthesis. In PTP, assuming that reader and writer runnables of a data element are
mapped to different tasks, the number of data elements after buffering is defined as
(Ngr + Nw + 1) x data = 6 * data, where data defines the number of data elements
before buffering, i.e., of the unbuffered models, and N and Ny define the number of
reader and writer tasks, respectively. If the writer runnables of a data element are all
assigned to the same task, only one buffer element is required for the writer task. The
same holds for reader runnables. In this case study, reader and writer runnables of the
same data element are mapped to any task. Consequently, Ny has any valuein 1 — 3
and Ny in 1 — 2. Therefore, the actual amount of data elements in PTP is less than
6 * data. In SBP-G, the exact amount of buffers is defined by Algorithm 3. In SBP-L,
the amount of buffers is influenced by the amount of writes that can be suppressed.

Thus, in Chassis models, PTP, SBP-G, and SBP-L have on average 5.8, 3.5, and 3 times
more data elements than the unbuffered models, respectively. Therefore, PTP, SBP-G,
and SBP-L require on average 5.8, 3.8, and 3 times more memory capacity than the
unbuffered models, respectively. In EMS models, PTP, SBP-G, and SBP-L have on
average 5.8, 4.29, and 4.57 times more data elements than the unbuffered models,
respectively. Therefore, PTP, SBP-G, and SBP-L require on average 5.8, 4.3, and 3.6
times more memory capacity than the unbuffered models, respectively. The increase in
memory size between the buffered and unbuffered models is not equal to the increase
in the number of data elements because the number of buffers is not identical for all
data elements and the data elements have different data sizes.

The results show that PTP requires more memory to store buffers than SBP. This occurs
because SBP allows sharing of buffer elements between tasks and defines the buffer
size based on the overlapping between LET intervals, rather than on the number of
reader and writer tasks. By suppressing the unneccesary writes or writes that satisfy
data age constraints, the memory demands are further reduced. Therefore, in Chassis
models, SBP-G requires on average 34 % less memory than PTP. SBP-L requires on
average 48 % and 21 % less memory than PTP and SBP-G, respectively. In EMS models,
SBP-G requires on average 27 % less memory than PTP. SBP-L requires on average
39 % and 17 % less memory than PTP and SBP-G, respectively.

What is the impact of increasing data elements and data accesses? These results show that the
linear increase of data elements and their accesses in the unbuffered models increases
linearly the number of data elements after buffer synthesis. Therefore, the memory
size required to store all data elements after buffering is also linearly increased. The
slight increase of the memory for unbuffered models is due to the linear increase of

92 | Inter-Task Communication Design

150 T T LT T T T T T ITI T TTTT 150 T T T LT T T T T T T T I I TTTT
e Unbuffered e Unbuffered
+PTP Oooo“ +PTP Ooood
100 | |*SBP-G OOOOOOO | 100 | |*SBP-G OOoooo |
oSBP-L o oSBP-L o

50 |- o 2 50 |- o 2

xR XRXXXXX xxXRXXXXX

Stack Memory (KBytes)
%,
8
Stack Memory (KBytes)
%

XXX XXX
xXXXXX o XXXXHXX
XXXXXXX XXXX
XXX XX XX

o° Xx XX XXX o XxXXXXX
WHﬁTuuuuuuuuLuuuuuuuuu W%ﬂfﬁuuuuuuuuuuuuuuuuu

00 15000 25000 00 15000 25000
Data Accesses .14 Data Accesses .14

(a) Chassis (b) EMS

Figure 3.15: Stack memory capacity of the Unbuffered, PTP, SBP-G and SBP-L models for (a)
Chassis and (b) EMS applications.

data accesses among models and the uniform selection of the data size between 8 bit
and 256 bit. The effect of data accesses and data size selection is reflected also in the
results of PTP, SBP-G, and SBP-L models. The slight drops of the memory size among
models, despite of the increased amount of data elements, occur because of different
data sizes assigned to data elements.

Evaluation results for stack memory—Figure 3.15a and Figure 3.15b show the stack
memory in KBytes required to store local variables for the Chassis and EMS models.
The depicted stack size refers only to the memory required to store local data related
to LET buffering. In SBP-G, local variables are the indexes initialized at the beginning
of task’s execution, which are used for accessing the buffers. In SBP-L, the local
variables include the indexes and the local variables that are used by writer jobs with
suppressed writes to write during execution. Although index variables have a life
time equal to the execution time of the task, the local variables of SBP-L, that are used
to suppress writes, have only the life time of the task’s runnables that operate on these
data. Therefore, the stack memory of SBP-L shown in the graphs is the worst-case
scenario, i.e., the case when all local variables are allocated at the same time in stack.
In PTP, local variables for the purpose of buffering are not required. Therefore, the
stack size is zero.

In SBP, the stack memory size required to store indexes is defined by the data size of
index variables and their amount created for each task. In this case study, the size of
each index variable is 8 bit. As shown throughout this chapter, the amount of index
variables in every task is defined by the number of global data elements that a task
reads and writes during its execution. The maximal amount of index variables is
(Nr + Nw) * data = 5 x data, where data defines the amount of data elements of the
unbuffered models, and N and Ny define the number of reader and writer tasks. If a
task has runnables that read and write the same data element, then two index variables

3.5 Evaluation | 93

are created. If a task has more than two runnables that write the same data element,
then one index variable is created for both runnables because they must write on the
same buffer element. The same holds for reader runnables. In this case study, reader
and writer runnables of the same data element are mapped to any task. Consequently,
Nr has any value in 1 — 3 and Ny in 1 — 2. Therefore, the actual number of index
variables is less than 5 * data.

In SBP-L, in addition to the memory needed for index variables, the memory for local
variables that are created to suppress writes is shown in both graphs. If for a data
element a write is suppressed in a writer task, then one local variable is created. The
size of a local variable is the same as the size of the data element for which the write is
suppressed. Therefore, the amount of local variables resulting from suppressing of
the writes is defined by the number of writer tasks that have suppressed writes and
the amount of data elements that are suppressed. The amount of suppressed data
elements is defined by the data age constraints and the overlapping between tasks.

The results show a linear increase of the stack memory with the increasing number of
data accesses. The slight drops of the stack among models, despite of the increased
amount of data elements, occur because of different data sizes assigned to data
elements.

3.5.1.2 Buffering Run-Time Evaluation

To evaluate the impact of data protection in buffering, the run-time overheads of
PTP, PTP-WSP and PTP-WOSP models are defined to distinguish between simulation
results of PTP with and without spin-locks. In PTP-WOSP models, the accesses to spin-
locks are not simulated and, hence, the time of accessing and waiting for spin-locks is
zero. The PTP-WOSP models show the performance of PTP under ideal circumstances,
in which no protection of data reads and writes is involved during execution of copy-
in and copy-out operations. The PTP-WOSP is not common for applications with data
elements shared between multiple cores. However, in this case study the aim is to
emphasize the extend at which data protection overheads influence the performance
of PTP. The SBP-G and SBP-L models contain the application buffered using SBP with
global and local programming styles, respectively. The buffering run-time overheads
are transformed to utilization in (%) and are referred to as buffering utilization. The
detailed results of this evaluation are given in Section A.1.0.2 of Appendix A.
Although briefly described in this chapter, to understand these results, the influencing
application parameters of the buffering overheads are summarized as follows.

Which application parameters define the buffering run-time overheads? The size of data
elements and the amount of their accesses influence in PTP-WSP and PTP-WOSP the
run-time of copy-in/-out operations that occur at the boundaries of LET intervals.
In SBP-G and SBP-L they impact the run-time of buffer initialization at the start of
the HP interval and at the boundaries of task’s execution, for both indexes and local

9 | Inter-Task Communication Design

data operations. The data size defines the amount of time it takes for a task to read
and write a data element from the memory. This time is also determined by the
memory component to which the data is allocated. For instance, as described in the
configuration of this benchmark, for a data element with size up to 64 bit a minimal
memory accessing time of 5ns occurs if it is allocated to the local memory of the
core and 10ns if it is allocated to the shared memory or the local memory of the
other cores. This time is higher for bigger data sizes and is also increased by bus
and memory interference delays. In this evaluation, the allocation of data elements
to memories is not identical in all buffering configurations and models because the
heuristic in Section 3.4.5.1 is applied. Hence, the total memory accessing time differs
among models and buffering configurations. The periods of computation tasks define
the accessing frequency of data accesses for both protocols. In SBP, the period of the
HP interval defines the frequency of data accesses at the start of the HP.

As described in this chapter, the number of data accesses added for buffering purposes
for each data element with Ny reader tasks and Ny writer tasks is defined as follows.
In this evaluation, Ng and Ny for each data element are in the ranges 1 —3 and 1 — 2,
respectively. Hence, for each data element,

> PTP has at most 2 * (Ng + Nyy) = 10 data accesses in copy operations,

> SBP-G has at most Ng + Ny = 5 write accesses on index variables and 2 accesses
at the start of each HP interval, and

> SBP-L has at most N + Ny = 5 accesses on index variables, 2 accesses at the
start of each HP interval, and 2 NI/,V on local variables. N{N defines the number
of writer tasks with suppressed writes. In this evaluation, forty to fifty-two
percent of data elements are suppressed by data age constraints and N{,\, is
defined by Algorithm 3 when writes are suppressed. Therefore, the run-time of
copy operations in SBP-L does not exceed the run-time of copy operations of
PTP.

In SBP-G and SBP-L, the accesses at the start of the HP interval occur only if the last
produced output is not stored in the initial buffer element. Their number may be
different between SBP-G and SBP-L because the buffer schedule is not identical in both
protocols and the last output is not necessarily stored in the same buffer element. The
write accesses on index variables differ from the rest of additional accesses because
indexes are allocated in the stack and are assumed to have a data size of 8 bit.

Thus far, only the effect of data elements and their accesses in buffering utilization
is described. In PTP-WSP, extra buffering utilization comes due to the usage of spin-
locks. For each data element accessed in any computation task, one unique spin-lock
is used to ensure data stability during concurrent accesses in copy operations. A
maximal amount of 2 * (Ng + Ny) spin-lock accesses are added for each data element
with Ny reader tasks and Ny writer tasks. In this evaluation, at most 10 spin-lock
accesses are added for each data element. Except of the fixed run-time for spin-lock’s

3.5 Evaluation | 95

usage, the waiting time for blocked spin-locks increases further the run-time of copy
operations.

Evaluation results—The buffering run-time overheads of SBP and PTP protocols for
Chassis and EMS models are shown in Figure 3.16a and Figure 3.16b, respectively. The
graphs show the total utilization (in %) caused by SBP and PTP buffering operations for
applications with data accesses ranging between 500 and 25,000. The x-axis shows the
amount of unique data accesses of the initial, i.e, unbuffered models. Considering the
configuration of 5 runnables accessing a data element, i.e., 2 writers and 3 readers, the
data accesses depicted in this graph shows five times the number of data elements in
each model. The number of data elements differs between models by 100. Specifically,
the graphs show the buffering utilization of PTP with spin-locks (PTP-WSP) and
without spin-locks (PTP-WOSP) and the buffering utilization of SBP with global
(SBP-G) and local (SBP-L) programming styles.

Which buffering protocol performs better in terms of buffering overhead? The results show
that SBP performs better than PTP in terms of buffering overhead in both programming
cases, for all models and in all cases (with or without spin-locks). This happens because
in PTP, compared to SBP, more data accesses occur due to buffering operations. Also
when spin-locks are not used, the performance of PTP does not exceed the one of SBP.
These results indicate that physical data exchanges at the boundaries of LET, i.e, by
means of copy operations in PTP, have an enormous impact on the performance of
LET regarding buffering run-time overheads. This occurs because a large number of
data transfers, protected by expensive resources such as spin-locks, occur between
different memory locations and memory components.

The effect of physical data exchanges is observed also in SBP-L, in which buffering
utilization is increased due to the suppressing of writes. This occurs because in tasks
with suppressed writes physical data exchanges occur at the boundaries of runnables
execution, i.e, filling and flushing of local variables. Although the overall global
memory demands are reduced, choosing SBP-L over SBP-G to integrate LET is a
trade-off between the increased stack size, the reduced demands for global memory’s
space, and the increase of buffering utilization. Thus, in Chassis models, SBP-G has
on average 29.1, 6.2, and 2.6 times less buffering overhead than PTP-WSP, PTP-WOSP,
and SBP-L, respectively. In EMS models, SBP-G has on average 34.7, 7.9, and 2.8 times
less buffering overhead than PTP-WSP, PTP-WOSP, and SBP-L, respectively.

Which impact has the increase of data elements and data accesses? The results show that the
buffer utilization of each protocol increases linearly with the linear increase in data
accesses and data elements. As previously described, this occurs because more data
and spin-lock accesses occur in the system after buffering is applied. The sudden drops
of utilization between models of the same protocol, despite of the increasing number
of data accesses, occur due to the distribution of data accesses to tasks of different
periods and the size (in bits) of data elements. In this evaluation, the distribution of
data accesses to tasks is generated randomly and the size of data elements is generated

9% |

180
170
160
150
140
130
120
110
100
90
80
70
60
50
40
30
20
10

Utilization (%)

150
140
130
120
110
100
90
80
70
60
50
40
30
20

Utilization (%)

10|

Inter-Task Communication Design

7\\\HHHHHHHHHHHHHHHHHHHHH;;(&: DPTP_WSP
i 7 || o PTP-WOSP
i & || e SBP-G
i o || o SBP-L
| Lo AR y =7.15-10"3 - x — 0.29
| o0 AR y=17-1073 x— 147
- = 1] y=245.10"*-x-3.89-107°
: o 1 y=7.01-10"*-x—0.6
I |
EIB
[jag |
[BIE'DD |
- D,B |
- BED.] QUD_QE}&]D»D'DGDDE
: EEEE oot UBUDDDBDDUdzD 0000000000000000 OOOO:
Emaa%%m@%888@8<M>4>@@<P<PW‘Pg‘wo’?‘????‘????????????????
00 5000 10000 15000 20000 25000
Data Accesses 104
(a) Chassis models
TTTTT T T I T I T T T T T I T I T T I T T T T I T I T T I T T I T I T T T T T TTTIT I T o PTP-WSP
40| o PTP-WOSP
- || ° SBPG
- o= || o SBP-L
i 5 s e y=55-10"3 . x — 0.4
- e 1y =139-10"% x —1.23
i o i y=158-10"%-x —8.84-1073
i .o 1| y=48-107*. x — 0.35
L D;lg,ﬁ i
- DDD . |
| o o .ge? ol
'D,D’ D_DDQ,DG-'D'D
= BDQD DUEUUBDDDDBDDD O N
=? E]E]UBD 0000000000000000 o4
Eamaa@mam8888%wwwwww$$9w@?WWW?W????
00 5000 10000 15000 20000 25000
Data Accesses .10
(b) EMS models.

Figure 3.16: Buffering utilization of PTP-WSP, PTP-WOSP, SBP-G and SBP-L for (a) Chassis
and (b) EMS models. The dotted lines represent the linear regression. The utilization shows
the total buffering load of 6 processor cores.

3.5 Evaluation | 97

using a uniform distribution. This means that tasks of equal periods that belong to
different models can have different amount of data accesses and access data elements
of different data size, and hence, different buffering utilization occurs. Additionally;,
concurrent data accesses among tasks running on different cores can cause different
memory and bus interferences for different models. Furthermore, the execution times
added by the usage of spin-locks shift the position at which concurrent data access
operations occur, thus causing a different amount of memory access and interference
times when spin-locks are not used. These effects explain the scattered distribution of
buffering utilization of PTP-WSP and PTP-WOSP models with different data accesses.

The differences of PTP-WSP models are higher for applications of Figure 3.16b than
for applications of Figure 3.16a because in EMS models 6 out of 22 tasks have periods
in the range of 20ms — 1000 ms. In Chassis models, all tasks have periods lower than
20 ms. The same behavior is observed also for SBP-G and SBP-L, but the differences
in buffering utilization between models are not as significant as for PTP-WSP and
PTP-WOSP because memory accessing times are lower in SBP-G and SBP-L.

What is the impact of spin-lock usage in buffering overheads of PTP? Although not explicitly
shown in Figure 3.16, the usage of spin-locks (PTP-WSP) causes in PTP approximately
4 — 7 times more buffering utilization compared to when spin-locks are not used
(PTP-WOSP). This shows that data protection of copy operations via spin-locks highly
impacts the performance of PTP and increases the demands of PTP for processor
resources. In PTP-WSP, for Chassis applications with up to 5,000 data elements and
25,000 data accesses approximately 30 % of each core’s load is used for data transfers,
i.e., copy operations, which is highly inefficient in practice. For applications using PTP
for LET buffering with up to 1,000 data elements, the buffering utilization per core
is up to 6 %. In PTP-WSP, doubling the number of data elements and their accesses
approximately doubles the buffering utilization per core. If the amount of spin-locks
is reduced, in the best case, i.e., in PTP-WOSP, the PTP’s buffering performance is
greatly improved. For instance, in Chassis applications with up to 5,000 data elements
and 25,000 data accesses the buffering utilization is for each core approximately 7 %.
It is possible to reduce the amount of used spin-locks in PTP through design decisions
such as task-to-core allocation or TTS scheduling. In TTS, spin-locks can be completely
avoided by scheduling copy operations to execute sequentially between cores.

3.5.2 Industrial Case Study

In this case study, SBP and PTP protocols are evaluated using the EMS system pub-
lished in the FMTV challenge [76]. The original periodic tasks are transformed accord-
ing to the LET semantics and are assigned to have the LET interval duration equal
to their periods. The original model has utilization higher than 100 %. Therefore,
the amount of instructions to tasks is decreased until a schedulable system is found.
The list of tasks and their attributes are shown in Table 3.4. Tasks are distributed to

98 | Inter-Task Communication Design

Period (ms) Priority Utilization (%) Core

Task_1 1 10 30.69 0
Task_2 2 9 15.26 3
Task_5 5 9 12.92 0
Task_10 10 7 53.74 2
Task_20 20 6 31.22 1
Task_50 50 8 411 1
Task_100 100 5 6.67 1
Task_200 200 4 0.06 1
Task_1000 1,000 3 0.13 1

Table 3.4: Modified EMS parameters (hyper-period of 1s). The Priority attribute defines the
priority of the task. The Core attribute contains the index of the core in which a task is mapped
to execute. Utilization attribute defines the computation load.

different cores such that they execute without deadline violations. They are mapped
to a quad-core processor with cores indexed by labels 0 — 3. Each processor’s core has
a frequency of 200 MHz and has access to its dedicated local memory via a crossbar
with a delay of 10 ns and to the shared global memory and local memories of other
cores via a crossbar with a delay of 40ns. The processor has four local memories
of size 128 kB each and one global memory of size 256 kB. All memories have 32 bit
data width and bus contentions are handled via first-come first-serve bus scheduling
strategy.

To ensure that LET communication tasks execute uninterruptedly and at the bound-
aries of LET intervals, the following configurations are done. Firstly, LET communi-
cation tasks are configured as non-preemptive and with higher priorities than LET
computation tasks. Secondly, offsets are assigned to LET End tasks such that they
execute after LET Start tasks and before the end of their LET intervals. This evaluation
considers only periodic tasks and assumes that sporadic tasks and interrupts execute
on dedicated cores. Because LET is applied for data exchanges between periodic tasks,
only data elements that are entirely exchanged between periodic tasks are considered.
Therefore, data elements that are exchanged between periodic tasks and sporadic
interrupts are not part of this evaluation and are removed from the system model in
order to avoid their impact on the results.

The application has 8,181 data elements, where 3,364 of those are constants and 4,817
are global data. Constant data types are not buffered and are accessed explicitly by
tasks. In 4,817 global data elements 3,758 of them have one writer and one reader task,
89 have one writer and two reader tasks, 3 have one writer and three reader tasks, 915

3.5 Evaluation | 99

Unbuffered PTP-WOSP PTP-WSP SBP-G

Buffering Utilization (%) 0.0 7.07 69.63 1.51
Global Memory Size (KBytes) 13.6 38.5 38.5 249
Stack Memory Size (KBytes) 0.0 0.0 0.0 9.7

Table 3.5: Results of EMS model. The global memory size is the memory capacity for global
data elements including buffers. The stack memory size is the memory capacity for index
variables.

are not consumed by any task, and 52 are never written. In total, the application has
4,112 read accesses and 4,765 write accesses to global data elements. Data elements
have a size between 8bit and 1024 bit. The size of SBP buffer indexes is 8 bit. Data
elements and buffers are re-mapped to memory components during buffer synthesis
using the shortest-accessed-memory-delay heuristic for reducing memory access delays.
The original mapping of constants to memories is not changed.

To measure the overheads of PTP considering an industrial OS, the 750 ns delay is
used as the maximal time of requesting and releasing a spin-lock. This time is based on
measurements of these operations in an existing industrial OS. It is assumed that LET
communication tasks are not interrupted by urgent interrupts because the former ones
are assumed to run on dedicated cores. Therefore, overheads caused by enabling and
disabling of interrupts in copy operations of PTP are not considered in this evaluation.

In this case study, PTP and SBP with global programming style is evaluated. No
writer task was identified in the model for which writes could be suppressed, and
since the model does not contain any data age constraints that can be applied to
suppress writes, buffer generation using SBP with local programming style is not
applied. Four models are created after buffer synthesis. The Unbuffered model contains
the application without applying any buffering strategy. Hence, for this model it is
assumed that global data elements are explicitly accessed at any time during a task’s
execution. The PTP-WSP and PTP-WOSP models contain the application with the
PTP buffer information with and without spin-locks, respectively. The SBP-G model
contains the buffered application using SBP with global programming style. Each
model is simulated after buffering generation.

Evaluation results—The results of this evaluation are shown in Table 3.5. The global
memory size (in KBytes) refers to the global memory capacity required to store
global data elements including buffers. The stack memory size (in KBytes) refers
to the stack capacity required to store index variables. The memory required to store
global data elements and buffers is in PTP, i.e., in PTP-WSP and PTP-WOSP models,
approximately three times more than the memory needed for the Unbuffered model.
The SBP-G requires nearly twice the global memory of the Unbuffered model. As

100 | Inter-Task Communication Design

already described in this chapter, the memory demands of each protocol are defined
based on the data size of the global data elements and the amount of data elements or
buffers that result after buffer synthesis. Hence, in PTP the amount of data elements
after buffering is 13,579 and in SBP the amount of buffers is 8,749. In PTP, the number
of data elements after buffering is calculated as 3 * 3,758 +4 * 89 +5 3 + 2 x 915 +
2 x 52, where 3,758 data elements have one reader and one writer task, 89 have two
readers and one writer, 3 have three readers and one writer, 915 have only one writer,
and 52 have only one reader task. In SBP-G, the exact amount of buffers is defined
by Algorithm 3.

The results show that SBP-G needs 35 % less global memory than PTP and 10 % less
total memory (including the stack) than PTP. The memory improvement of SBP-G
considering the stack is not satisfying because the overlapping between periods and
LET intervals of tasks is high. As previously mentioned, the stack size represents the
worst-case situation, in which all tasks are active and execute at the same time.

The buffering run-time overhead is converted in (%) and is referred to otherwise as
buffering utilization. The buffering utilization of SBP-G is 98 % less than the utilization
of PTP-WSP and 79 % less than the utilization of PTP-WOSP. SBP-G requires an
utilization of 1.51 % for buffering operations, where 1.5 % of it is due to initialization
of indexes at the beginning of each task’s execution and 0.1 % due to initialization
of buffers at the start of the hyper-period. PTP causes an increase of 69.63 % of the
total utilization if spin-locks are used (PTP-WSP model) and 7.07 % utilization if spin-
locks are not used (PTP-WOSP model). This evaluation demonstrates that the highest
buffering utilization (approximately 62.55 %) is caused by the usage of spin-locks for
ensuring data stability of copy-in and copy-out operations.

3.5.3 Conclusions

The conducted case studies showed that SBP significantly outperforms PTP in terms
of memory requirements and buffer run-time overheads for applications with purely
periodic communication. The results showed that SBP requires less global memory
than PTP to preserve the semantics of LET but increases the memory demands for
the stack. Therefore, choosing between PTP and SBP to integrate LET semantics
using memory requirements as quantifier is a trade-off between global and stack
memory requirements. The main advantage of SBP is that, compared to PTP, it causes
insignificant increase of the application’s utilization, while ensuring deterministic
data exchange between tasks. The poor performance of PTP is caused by buffering
operations that take place at the boundaries of LET intervals and by spin-locks that are
used to ensure data stability of the buffering operations. Also when spin-locks are not
used, the performance of PTP does not exceed that of SBP. Therefore, integrating LET
into such applications using the PTP requires high processing resources to ensure LET
semantics and all timing requirements. Using the PTP is particularly inefficient when
LET is applied for a high number of data accesses and elements. Thus, SBP provides

3.5 Evaluation | 101

scope to add new functionality to the application without changing the hardware
platform due to additional memory and processing resources requirements.

Another disadvantage of PTP is the sampling jitters of data exchanges at the boundaries
of LET intervals. In PTP, the points in time at which the produced results are made
available to other tasks depends on the scheduling decisions and the run-time of
copy-in and copy-out operations. Scheduling defines the execution order of copy-in
and copy-out operations, which are executed in the context of driver tasks, as well as
their distance to the start and the end of their LET intervals. Hence, the results are
not made available exactly at the end of the LET interval, but some time before. This
challenges the evaluation of LET semantics and end-to-end delay requirements, which
are, in PTP, not precisely time deterministic as presumed in the LET paradigm.

PTP has the advantage of handling a hybrid communication between tasks. Due to its
dynamic nature and the local buffering approach, the data exchange between LET
and non-LET tasks works in PTP without changes in the communication mechanisms
that are used by the non-LET tasks. The non-LET tasks can be periodic, sporadic or
a-periodic and they access the global data elements independently of the buffers used
by LET periodic tasks. This hybrid communication is not possible in SBP without
changes of the non-LET communication mechanisms used by non-LET tasks, because
in SBP multiple buffers of the same data element exist and the non-LET tasks cannot
choose among them without the knowledge of the produced time and whether the
data is being accessed concurrently by other LET tasks. Therefore, SBP is applicable
for data elements that are only exchanged between periodic tasks that communicate
through the LET paradigm. Finally, a semi-optimal integration design of LET for
automotive applications is possible using both SBP and PTP. Applying both protocols
for the same application incorporates both LET and non-LET tasks, and balances the
memory and buffering run-time overheads caused by LET semantics in PTP.

| 103

4 | Scheduling Design

This chapter describes approaches of constructing the schedule of Logical Execution
Time (LET) tasks for Time-Triggered Scheduling (TTS) and Fixed-Priority Scheduling (FPS)
mechanisms. The proposed schedule synthesis algorithms generate the schedule of
LET tasks considering non-functional requirements such as timing, LET communi-
cation semantics, and resource requirements and optimize their schedule in terms of
overheads caused by preemption and Operating System (OS) operations. Although
schedule synthesis approaches targeted in this work are mainly intended for LET
tasks that exchange data via Point-to-Point Protocol (PTP) and Static Buffering Protocol
(SBP), they are independent of the communication patterns and can be applied for
non-LET tasks that use any data exchange methods.

This chapter is organized as follows. An introduction and the motivation of an
automatic schedule synthesis for LET tasks is given in Section 4.1. The research
literature and the review of approaches that generate the schedule of embedded
applications are provided in Section 4.2. Next, the description and constraints of the
application model scheduled by TTS and FPS are provided in Section 4.3. Thereafter,
in Section 4.4, the overall methodology of schedule synthesis applied for TTS and FPS
scheduling strategies is provided. The proposed schedule synthesis algorithms for
the TTS and FPS approaches are described in Section 4.5 and Section 4.6, respectively.
Finally, Section 4.7 describes a comprehensive evaluation performed for the TTS and
FPS synthesis regarding scheduling overheads, performance, and efficiency.

4.1 Introduction

The schedule of embedded real-time systems must be feasible independently if LET
or the Bounded-Execution Time (BET) mechanism is used for data exchange. Schedul-
ing design of LET tasks is a necessary step during integration of LET paradigm in
automotive applications for the following reasons. If PTP is used to apply LET, then
scheduling must guarantee LET semantics in terms of time and dataflow determin-
ism. The PTP protocol on its own does not fully satisfy the semantics of LET. Hence,
scheduling must not only guarantee that tasks execute within their LET intervals
but also in a fixed order. Otherwise, LET semantics are violated. For instance, the
communication tasks that execute copy-in operations at the beginning of LET intervals
must execute exactly or close to the beginning of their LET intervals and before their
corresponding computation tasks. Similarly, the communication tasks that execute

104 | Scheduling Design

copy-out operations must be scheduled to execute after their corresponding com-
putation tasks and exactly or close to the end of their LET intervals. Although SBP
does not impose any extra requirement that must be considered in scheduling, LET
interval violations must be avoided at any cost. Otherwise, read and write accesses on
shared buffers could overlap among different tasks, thus leading to dataflow and time
determinism violations and an incorrect functional behavior of the software. To avoid
this situation, scheduling of LET tasks must take into account the impact of the timer
interrupt and context-switching overheads caused by preemption, such that timing
differences between the planned schedule at design time and the one occurring on
real target are avoided to an extent. The determinism of LET and functional behavior
is violated also in PTP if outputs are provided by communication tasks after the end
of their LETs.

Scheduling of LET tasks increases memory and processing time demands due to
activation and preemption of tasks. PTP needs higher hardware resources than SBP
because of more buffering and scheduling overheads. Applications that use PTP have
a higher number of tasks compared to SBP. The time required to activate and schedule
the additional tasks increases the requirements for memory and processor capacity
further. Therefore, planning and optimizing the schedule of LET tasks at design time
assists on hardware resource assessment during deployment of a LET system.

In this chapter, an approach to automatically synthesize and optimize the schedule of
LET tasks for TTS and FPS scheduling techniques is described. This work focuses on
these two scheduling techniques because of several reasons. The FPS scheduling is
the widely used approach in industrial in-vehicle applications and this work aims to
apply the proposed LET approaches for industrial applications. Additionally, FPS is
flexible and handles dynamic changes of the application at run-time and is, therefore,
the favorable approach for highly event-based applications.

Compared to FPS, TTS offers benefits such as controlling of overheads, better load
distribution, higher schedulability, deterministic execution of LET computation and
communication tasks, extensibility, and scalability. TTS is a convenient way to in-
crease the deterministic execution of existing automotive applications. Recently, the
automotive domain is evolving towards ways that handle software extensibility and
online updates efficiently. For instance, the AUTomotive Open System ARchitecture
(AUTOSAR) consortia introduced the software cluster concept [86] to simplify the
integration and the update of different application parts provided by several vendors.
Hence, TTS is viewed as a way to guarantee a feasible schedule execution also if an
application cluster is updated at run-time, such that the execution of tasks of other
application clusters remains unaffected after an update. Furthermore, TTS offers the
benefit of planning the processor’s time for future software extensions. Therefore,
this work exploits the possibility to schedule LET tasks by TTS and explores potential
optimization capabilities in terms of scheduling overheads.

The scheduling synthesis targeted in this work considers strict timing, communication,
and performance, i.e., resource requirements. Each requirement is fulfilled during
scheduling synthesis and is described as follows.

4.1 Introduction | 105

Predictability and Timing - As aforementioned, LET demands that the execution of
tasks is predictable and reproducible at design and implementation of the software
application. Although “correct by construction” ensures execution determinism of tasks
due to static nature of the selected scheduling strategies, in FPS, the reproducibility
of task execution flow is harder to predict because scheduling decisions are taken
at run-time based on priorities. Hence, an under- or overestimation of Worst-Case
Execution Time (WCET), which usually differs from the actual execution time of tasks,
impacts the execution flow and interferences of tasks. This is not a critical issue as
long as tasks finish their execution before the end of their LET interval. If WCET is not
pessimistically defined, then task overruns occur and LET intervals are violated. This
is because it is hard to precisely estimate WCET for multi-core processors [87]. Note
that also when WCETs cannot be estimated, approaches of defining them as early
time-budgets, before the functions are implemented, are proposed in [88]. This is a
reasonable approach to estimate WCETs during the first iteration of designing LET
intervals and scheduling.

The execution determinism is not an issue for TTS when WCETs are overestimated
because the execution order of tasks defined at design time is identical at run-time.
In both scheduling strategies, the schedule synthesis must generate the schedule of
tasks such that timing requirements are fulfilled, i.e., all tasks finish their execution
before their end of LET intervals or deadlines. Otherwise, the application produces
erroneous behavior and violates LET requirements. Additionally, the schedule of tasks
must be constructed in such a way that dropping of any task’s job is strictly avoided.

Communication - In PTP, data exchanges occur “close” to LET boundaries because
copy-in and copy-out operations do not take zero-time to execute and several of
these operations could occur at the same time instant, which delay each other due
to scheduling decisions. Scheduling defines when and in which order LET tasks are
executed. For instance, in applications with multiple LETs released at the same time
instant, the scheduling decides which of the communication tasks are executed first.
The later a communication task is scheduled, the larger is the distance between the
production time of its outputs and the end of its LET interval. As described in the
previous chapter, every LET computation task is in PTP associated with a LET Start
and a LET End task. To schedule LET tasks of PTP correctly, the Requirement 4.1 is
addressed during schedule generation.

Requirement 4.1: LET communication tasks must execute uninterruptedly, isolated and
free from interference. LET communication tasks must not preempt each-other nor could
be preempted by computation tasks, otherwise data consistency issues can occur and
dataflow determinism is violated. The only preemptions allowed are by the timer interrupt
for handling task’s activation, by urgent interrupts, or by the OS. After the preempting
interrupts finish their executions, the preempted task resumes its execution and no other
ready tasks. Communication tasks are mapped onto the same core as their respective
computation tasks. The LET Start and End tasks must execute before and, respectively,
after their related computation task. For coinciding LET intervals, all LET Start tasks

106 | Scheduling Design

must execute before and LET End tasks after computation tasks for reducing their distance
to the boundaries of their LET intervals.

In terms of data exchange, SBP handles LET semantics by design rather than imple-
mentation. The order of execution between LET tasks in SBP is not important, unless
LET Dynamic Buffering Protocol (LDBP) is used. In LDBP, buffers are assigned and
released at the boundaries of LET interval. Therefore, the task that handles these oper-
ations must execute before computation tasks and at the end of LET interval. In this
case, the scheduling requirements for LDBP are similar to the PTP. If SBP is used, then
scheduling must guarantee that the dedicated interrupt defined to initialize buffers
at the beginning of each Hyper-Period (HP) iteration is executed before computation
tasks start their execution.

Resource - In this work, LET tasks are activated by a high-resolution timer, which
causes less task activation jitters and task preemptions compared to a periodic timer.
Nevertheless, activation and preemption delays cannot be fully avoided also when
the high-resolution timer is used, because the timer interrupt takes a certain amount
of time to execute and has a higher priority than any LET task. Similarly, preemption
delays are as well caused by the execution of urgent LET tasks. For instance, in PTP,
communication tasks often delay and preempt computation tasks. In order to ensure
a feasible schedule, computation tasks are allowed to preempt each-other.

In applications with many preemptions, the response times of LET tasks can increase
beyond their LET interval duration. Furthermore, preemptions increase a system’s
load due to processing of context switches and can often degrade the execution’s
performance of the application. In case of hierarchical preemption, which for some
scheduling mechanisms, e.g., FPS is unavoidable, a higher stack memory capacity
is required to store the contexts of preempted tasks. Preemption cannot be avoided
entirely. Otherwise, if tasks are scheduled fully non-preemptively, finding a feasible
schedule is not always possible. Nevertheless, the number of preemptions can be
controlled and reduced by designing the schedule such that execution overlaps of
tasks are kept as low as possible.

In this work, the resource requirement is addressed by schedule synthesis as a way
to reduce the demands on hardware resources that are required to deploy a LET
system, e.g, by minimizing the amount of preemptions. If activation and preemption
delays caused by the timer interrupt and urgent LET tasks are not considered during
schedule design, then the planned task execution can significantly deviate from the
reality and the hardware resources that are required to deploy the application cannot
be precisely estimated. Furthermore, inclusion of preemption and context-switching
delays during schedule construction of LET tasks is crucial in order to ensure that the
execution behavior of tasks on target approximates the one estimated at design phase.
To design a schedule with a limited amount of preemptions, the preemption run-time
overheads are important to estimate the extent to which preemption overheads can be
reduced. Limiting only the number of preemptions [89] without taking into account

4.2 Related Work and Problem Analysis | 107

preemption run-time overheads does not explicitly show how much system load is
saved by optimizing the schedule in terms of preemptions.

4.2 Related Work and Problem Analysis

The following sections provide an overview of schedule synthesis approaches pro-
posed in the research community regarding TTS and FPS scheduling mechanisms.

421 Time-Triggered Scheduling

The TTS approach is typically used in the avionic domain [18] to schedule time
partitions in highly deterministic fashion. In the automotive domain, TTS is described
in OSEKTime [90] to schedule tasks and in FlexRay protocol [91] as well as in the
802.1Qbv shaper of Time-Sensitive Networking (TSN) [92] to schedule bus messages. The
schedule synthesis of TTS is extensively studied in the research community. Due to the
complexity of the scheduling problem, most of the proposed approaches, along with
this work, apply mathematical programming techniques [93] to generate a feasible
and optimal time-triggered schedule. The efficiency of these techniques depends on
the formalization and decomposition of the problem. Therefore, in contrast to the
majority of the related works, our approach focuses additionally on ensuring time
efficiency of the schedule synthesis. To our knowledge, related work does not address
such approach, semantics of LET, optimization of resource requirements, and the
delays caused by the execution of the timer interrupt and OS operations.

The majority of publications target the non-preemptive scheduling [94-110] and a few
the preemptive scheduling [111-119]. Because scheduling affects end-to-end delays
in non-LET systems, most of these works focus on ensuring the control performance
and quality by synchronizing the schedule of tasks and messages. Additionally, to
maintain the dataflow between tasks that affect the end-to-end delays of a critical path,
the execution order constraints are considered during schedule synthesis. In our work,
LET is used to ensure deterministic dataflow and to enforce zero jitters on end-to-end
delays and, hence, ensure the control quality. Note that in LET, the dataflow between
tasks is independent from the actual scheduling of computation tasks.

To ensure control performance and quality, the approaches in [94-97] synthesize
schedules for distributed systems during the design of controllers, which consists of
the definition of the sampling periods. They solve the synthesis of tasks and messages
in the same step such that end-to-end delays are fulfilled and the recent data values
are shared among sensor, controller, and actuator components. Samii et al [94] propose
a Constraint Logic Programming (CLP) formulation to construct the schedule. Schneider
et al. [95] and Goswami et al. [96] propose a Constraint Satisfaction Problem (CSP) and

108 | Scheduling Design

an Integer Linear Programming (ILP) formulation, respectively, for schedule synthesis
of FlexRay bus messages and tasks scheduled by the non-preemptive scheduler of
the eCos OS [120]. Roy et al. [97] focus on the trade-off optimization of the two
optimization objectives such as control performance and resource consumption of
the bus. The approaches discussed thus far describe similar formalization of the
scheduling problem.

Voss et al. [100] construct the schedule of tasks and messages in the same step as the
generation of task-to-core allocations. They consider several safety requirements [17]
and solve the schedule using Satisfiability Modulo Theories (SMT) [93]. They fulfill task
execution order constraints during schedule generation by ordering tasks in the order
that the distributed messages are sent. Zwerlov et al. [101, 102] extend the synthesis
problems [100] with design exploration techniques such that multiple optimization
goals are handled during the search for optimal solutions.

Igna et al. [103] evaluate the approach defined in [100] with an industrial avionic
application. They extend the approach to speedup the search of optimal solutions and
define a customized “preprocessing phase” [103, p. 5], in which schedulability tests
are used to check if two tasks can execute non-preemptively by means of different
offsets. If a possible preemption relation exists, then tasks are mapped for execution
to different cores. Otherwise, they are allocated to the same core and their offsets are
defined using an Integer Programming (IP) formulation similar to the approach in [98].
In our work, offsets are assigned only to LET End tasks to ensure Requirement 4.1.

Sagstetter et al. [104, 105] propose an approach to integrate the non-preemptive
schedule of tasks and messages of different Electronic Control Unit (ECU)s “into a
global schedule” [104, p. 1]. They use the ILP formulation proposed in [116] to
generate the schedule of each ECU independently. The purpose of this approach, as
the authors state, is to “reduce the integration complexity” [104, p. 1]. They integrate
schedules of different ECUs by assigning an offset to them using a SMT solver. These
offsets shift the start times of tasks and messages by a fixed amount of time. In the
evaluation case study, the authors show that the ILP based approach of [116] requires,
for a realistic system, more than 24 h to provide results. This time is reduced when
local schedules are constructed separately and later integrated using their integration
algorithm. These results show that solving the schedule of tasks and messages for
all ECUs in one step is impractical for complex industrial systems and does not scale
well with the increase of system’s size. To overcome this performance and scalability
issues, Darbandi et al. [106] solve scheduling of tasks and messages in two different
steps using Mixed Integer Linear Programming (MILP) and “minimize the number of
used slots” [106, p. 3] and the slack time between the deadline and finish time of jobs.
For the same reason, Hu et al. [109] avoid constraint programming and construct the
non-preemptive schedule of tasks and messages using the list scheduling approach
described in [121]. Their algorithm generates, in iterative fashion, the schedule of tasks
and messages in the same step and if no feasible schedule is found, then offsets of tasks
are reassigned to reduce the interference between tasks. The algorithm backtracks
until a valid schedule is found. Hu et al. [110] propose a similar algorithm for safety

4.2 Related Work and Problem Analysis | 109

applications and construct the schedule using the list scheduling approach described
in [122]. These algorithms lack the flexibility to optimize the schedule due to their
heuristic-based synthesis approach.

Minaeva et al. [107] focus on optimizing the control performance and propose a
heuristic search based algorithm to improve the solving performance of the non-
preemptive schedule synthesis considering zero-jitters of end-to-end delays by means
of LET. The authors consider the zero-time assumption of LET for exchanging data
and do not consider explicit semantics of LET in the schedule synthesis, except that for
tasks that use LET the execution order constraints are not applied. In their approach,
the start time of each job is defined equal to the start time of its respective previous
job multiplied by a fixed amount of time. They use a schedulability test, similar to
the one presented in [103], to validate the feasibility of the schedule. In our work, we
handle explicit LET requirements during the schedule synthesis and allow any start
time for jobs in order to construct a feasible schedule also for cases in which a fully
non-preemptive schedule does not exist.

Wang et al. [108] describe the generation of the non-preemptive schedule for multi-
core AUTOSAR systems [72]. The start times of runnables are generated considering
the execution order between dependent runnables, which is essential because they are
mapped to multi-core processors and the correct data flow must be preserved. They
constructs the schedule table, which is defined in AUTOSAR to activate runnables
by means of expiry points [19]. In this case, runnables are still scheduled by FPS
but because the schedule is constructed non-preemptively, they execute as being
scheduled by TTS. Eisenbrand et al. [98] propose an approach to generate the schedule
of tasks for aircraft applications using IP. Similar to [103, 108], they avoid preemption
of tasks by assigning different activation offsets to tasks such that all jobs are released
in unique times. Blikstad et al. [99] describe a Mixed Integer Programming (MIP)
approach to generate the non-preemptive schedule of aircraft applications focusing
on forecasting the extensibility of the software and on the execution order constraints
and delays between tasks that have dataflow dependencies. They plan extensibility in
the schedule of each task by defining a “maximum idle time between tasks” [99, p. 4].
In this way, new functionalities can be added into a task without reconstruction of the
schedule. In their approach, the schedule of tasks is defined in task-level and is solved
together with the schedule of bus messages.

Although non-preemptive TTS scheduling offers several benefits, it cannot always
guarantee a feasible schedule, especially for complex industrial automotive appli-
cations. The complexity of constructing the schedule of preemptive compared to
non-preemptive TTS is higher. Hilbrich et al. [114, 115] propose a Constraint Program-
ming (CP) formulation to generate the schedule of tasks for aircraft applications. The
authors handle preemption between tasks by using the slicing approach, in which the
WCET of tasks is divided into slices of fixed size before the schedule is constructed.
These time-slices are allocated to the HP interval during synthesis. Although this

110 | Scheduling Design

approach is valid, it does not always guarantee a feasible schedule, does not scale well
in terms of resource usage, and depends on the optimal definition of the slice size.

Zheng et al. [111] and Zeng et al. [112, 113] describe similar MILP formulations to
generate a preemptive schedule of tasks. They construct the schedule of tasks in the
same step as the schedule of bus messages distributed on a FlexRay network [91].
In [112], the arrival times and the release times of each job are generated during
schedule synthesis. In case of activation jitters, the arrival time is different from the
release times. In this work, these times are calculated outside of the constraint solver
for improving the execution performance of the synthesis algorithm. In addition to
the formalization for the non-preemptive scheduler of eCos OS [120] given in [96],
Lukasiewycz et al. [116] describe an ILP formulation for preemptive schedule genera-
tion of tasks scheduled by Last In - First Out (LIFO) of OSEKTime [90]. Their schedule
generation of tasks is performed in task level and not in job level as in our work. They
define the start time of jobs as an increment of the task’s period and the start time
of the first job released in the hyper-period. Nevertheless, to calculate a maximal
end time of tasks, which is required to validate the schedule feasibility, the authors
generate the actual end times of all jobs released in one HP. Although this approach
reduces the exploration space and minimizes the solving time, it can lead to infeasible
solutions faster also when a feasible schedule can be found. Therefore, in our work,
the start times of jobs can take any value within the boundaries of their LET intervals.

McLean et al. [119] defines the TTS schedule of ADAS applications using Earliest
Deadline First (EDF) as part of a simulated annealing algorithm, which they propose
to allocate tasks to cores and assign offsets and deadlines of tasks. Although EDF
is a fast way to assign priorities, it does not always provide an optimal solution.
Zhou et al. [117] propose an approach of generating the time-triggered schedule of
safety partitions of ARINC 635 [18] considering the context-switching time that occurs
between partitions. The authors focus on reducing the number of context switches
between partitions and the duration of the schedule. They treat partitions as server
tasks with constant attributes such as period and WCET and use the EDF heuristic
to construct their schedule. They propose “a greedy algorithm to reduce the number
of preemptions” [117, p. 3]. In their algorithm, periods and WCETs of server tasks
are recalculated until a feasible schedule is found. The schedule of tasks within the
partition is not handled in [117]. In our TTS schedule synthesis, time partitions are not
considered, periods and WCETs of tasks are not changed during synthesis, and the
context-switching between tasks is handled and optimized using the CP approach.
In [117], the optimization of preemptions provides only one solution, which is not
necessarily the optimal one.

Han et al. [118] propose a genetic algorithm to generate the schedule of safety par-
titions of ARINC 635 and reducing resource usage of the processor by reducing
preemptions among partitions. In their approach, the schedule is simulated in order
to validate the schedulability. In scheduling problems, genetic algorithms tend to fail

4.2 Related Work and Problem Analysis | 111

in providing solutions of sufficient quality, and often an unpredictable number of
generations is required to produce a feasible schedule.

Theis et al. [123] propose an EDF heuristic and a search based algorithm to construct
the schedule of tasks for applications with two criticality modes. A review on mixed
criticality systems is given in [124]. As described in [123], because the WCET is hard to
precisely estimate [125], more pessimistic upper bounds of WCET are defined for high
criticality tasks in order to certify the schedule accordingly to safety standards. Tasks
with overly pessimistic WCETSs run on high mode and tasks with the assumption of
reasonable upper bound of WCET run on a low mode. It is not in the focus of this
work to construct the schedule of tasks for high and low modes. Additionally, this
work assumes a pessimistic upper-bounding of task WCETSs such that LET overruns
do not occur at run-time.

A summary of the discussed related work is given in Table 4.1. Approaches in [111-
113] relate the most to this work. They are similar to the approach proposed in this
work in the way preemption and execution time-frames of jobs are calculated in the
constraint-based formalization. The differences are as following. In this work, LET
is used for data exchanges and, hence, execution order constraints are not needed
to ensure dataflow between tasks. Our approach constructs the schedule of tasks
independently of the schedule of bus messages to improve run-time performance, and
handles optimization of resource requirements and the preemption and start delays
caused by the timer’s execution and OS routines. A schedule defined without the
impact of the timer and OS overheads leads to an inaccurate execution behavior of
tasks and an unrealistic planning of hardware resources. In terms of the proposed
mathematical formulation, our work conducts an improvement of the work in [111].

HmE -
50

. lzlg| |E| = &2

o0 el o 5" = 515

2 < | = -c@ < '8 wn

o EIE ||y & ||

§e. 3| | ol & S o | &b

e hlE|<S| 3| B |93

< 519 o) A

s B[E|2|E| 5 |2

= AlE Ol | & |E | =2

Contribution CP/Heuristic |V |V |V |V | TB |V | X

Eisenbrand et al. [98] IP X X | X | X| 2 |/ | X

Steiner et al. [126, 127] SMT X1 X X\ X| 2 | X |V

Schneider et al. [95] CP X| X | X| X|TB |V |V

Goswami et al. [96] ILP X X X| X| T |/ |V

Voss et al. [100] SMT X| X | X| X | TB |V |V

112 | Scheduling Design

Igna et al. [103] SMT X| X | X|X| ST |V |V
Samii et al. [94] CLP X| X | X|X| 1B |V |V
Roy et al. [97] CP X| X | X|X|TB |V |V
Darbandi et al. [106] MILP X | X | X | X| TS |/ |/
Wang et al. [108] MILP X| X | X|X| TS |V | X
Hu et al. [109, 110] Heuristic X XX\ X| ?2 |/ |V
Sagstetter et al. [104, 105] SMT X X | X| X|TB |V |V
Minaeva et al. [107] Heuristic o | X | X | X | ST |/ |V
Blikstad et al. [99] MIP X | X|X| X|TB |/ |V
Theis et al. [123] Heuristic | X | 2 | X | X | 2 |/ | X
Zhou et al. [117] Heuristic | X | o [X | o | 2 | X | X
Han et al. [118] Genetic X|lo|X| o] 2 | X | X
Hilbrich et al. [114, 115] CP XV | X|X|Ts |/ | X
Lukasiewycz et al. [116] ILP X\ V| X|X|TB |V |V
Zheng et al. [111] MILP X V| X|X|TB |V |V
Zeng et al. [112, 113] MILP X\ V| X|X|TB |V |V
McLean et al. [119] EDF X |V | X|X|SIM|V | X

Table 4.1: Qualitative comparison of approaches for TTS synthesis problem.

Legend: satisfied (v'), partially satisfied (o), unsatisfied (X), or unknown (?), TS (Time-
Slicing) or TB (Time-Budgeting), ST (Schedulability Tests), Simulated Annealing (SA), SIM
(Simulation).

4.2.2 Fixed-Priority Scheduling

As TTS, the FPS approach is used in the automotive [90] and avionic [18] domain to
schedule tasks and bus messages. FPS is one the most studied scheduling mechanisms.
The related work targets several aspects of FPS [128], such as definition of efficient
schedulability tests [27, 33, 129], priority assignment synthesis, techniques of limiting
preemption [37, 130], and methods of applying FPS in multi-processors [29]. This
work focuses on the schedule synthesis problem. Therefore, only the related work
targeting priority assignment for the preemptive FPS is addressed in this section.

4.2 Related Work and Problem Analysis | 113

A considerable amount of publications describe heuristics, meta-heuristics, and math-
ematical programming formulations to solve the preemptive FPS synthesis problem.
This work applies constraint programming techniques [93] combined with a heuristic
to generate a feasible and optimal task priority assignment. Due to the complexity of
validating schedule feasibility, most of the proposed approaches use schedulability
tests to validate if a set of priorities leads to a feasible schedule. Pazzaglia et al. [129]
describe several sufficient tests for FPS under different assumptions.

In this work, schedule feasibility is validated not based on Worst-Case Response Time
(WCRT) analysis, as widely performed in the related work, but by calculating during
priority assignment the exact execution of all jobs released in the HP interval. The in-
tegration of WCRT calculations into mathematical formulations significantly increases
the complexity of the scheduling problem and the solving times of schedule synthesis,
because the WCRTSs of tasks are calculated iteratively. Our approach offers not only
reasonable solving times, but also the possibility for optimizations such as minimiza-
tion of preemption overheads and actual response times. It supports synchronous and
asynchronous tasks with implicit and explicit deadlines without formulating these
use cases in the WCRT calculation. Reducing the number of preemptions, does not
only reduce preemption overheads, defined by context-switching delays and Cache-
Related Preemption Delay (CRPD)s, but also improves the overall response times [131].
Although not explicitly described in our formalization, this approach offers as well the
possibility to consider job based execution times instead of a WCET on task level. To
our knowledge, related work does not address the semantics of LET, the optimization
of resource requirements, the overhead of context switching, and the delays caused by
the execution of timer interrupt and OS operations.

In single-core processors, the Rate Monotonic (RM) and Deadline Monotonic (DM) heuris-
tics are often used to assign priorities to tasks. Davis et al. [132] provide a summary
of the related work regarding these heuristics. Because RM and DM do not always
provide optimal priority ordering, they are not sufficient for applications with depen-
dent and asynchronous tasks that run on a multi-core platform. Audsley et al. [133]
propose the Optimal Priority Assigment (OPA) algorithm to assign task priorities. Davis
et al. [134] provide an extension of OPA to ensure robustness and Grenier et al. [135]
apply the OPA to decrease the complexity of offset free systems [136]. They use OPA
to reduce the search space of their offset assignment algorithm. Garibay-Martinez et
al. [137] apply OPA for distributed systems considering single and multi-threaded
tasks running in a multi-core platform. They propose an extension of OPA to assign
priorities to tasks and bus messages during the allocation of tasks to processors. They
show that OPA performs better than DM also in distributed systems. Similarly, Huang
and Cheng et al. [138] adopt OPA to find an optimal priority ordering for a set of
sporadic self-suspending tasks. OPA assigns priorities based on schedulability test.

Despite of their fast way to assign priorities, heuristic based approaches, including
OPA, are not sufficient for industrial applications because they cannot be used to as-
sign priorities by focusing, in addition to the deadlines, on optimization goals such as
preemption overheads, end-to-end delays, and execution order between tasks. Garcia

114 | Scheduling Design

and Harbour et al. [139] propose the Heuristic Optimized Priority Assignment (HOPA)
algorithm, which assigns priorities using DM based on “local deadlines” [139, p. 2].
These deadlines are calculated in each iteration of the algorithm considering as well
end-to-end delays. The authors show that HOPA provides a faster and better priority
assignment than the simulated annealing. They assess the quality of the solution by
the laxity, i.e., the time between the deadline and WCRT of a task.

Zhu et al. [140, 141] apply and extend HOPA to assign priorities considering exten-
sibility. Although HOPA provides quick priority ordering and better solutions than
the simulated annealing and DM per se, it does not always guarantee an optimal
assignment. Azketa et al. [142] showed that their proposed genetic algorithm provides
a better priority assignment than HOPA. Nevertheless, to gain its benefits, they apply
HOPA to generate the initial population, which provides already a set of solutions
with feasible schedule.

Several authors apply meta-heuristics to assign priorities to tasks. Hamann et al. [143]
apply in their genetic algorithm the concept of “traffic shaping” [143, p. 3] to lead the
search towards feasible solutions in case high jitters cause overload of events. Samii et
al [94] assign priorities to tasks during control design and Sayuti et al. [144] assign
priorities in the same step as task allocation considering end-to-end delays and NoC
communication model. Bouaziz et al. [145] reduce the amount of preemptions by
solving the problem of mapping functions to tasks such that the overlapping between
tasks is reduced. They apply RM to assign priorities and a genetic algorithm for
the mapping problem. Bate et al. [146] propose a simulated annealing algorithm to
allocate tasks to cores and to assign priorities to tasks and bus messages. They perform
sensitivity analysis [147] to define a safe upper-bound of task execution times such
that available capacity for future functionality extensions is efficiently planned during
the aforementioned designs. As previously mentioned, genetic algorithms tend to
fail in providing solutions of sufficient quality, and often an unpredictable number of
generations is required to produce a feasible schedule.

To distinguish the benefits of mathematical programming techniques and of genetic
algorithms, Mehiaoui et al. [148] describe a MILP formulation and a genetic algorithm
to assign task priorities and to allocate functions to tasks and ECUs and messages
to bus. Their optimization goals are end-to-end delays and extensibility. To validate
the schedulability, they adopt WCRT analysis on function level. Wozniak et al. [149]
solve the aforementioned problems in one step using a genetic algorithm and a MILP
formulation as in [148] but considering as well optimizations of the memory and
run-time overheads that emerge from data protection mechanisms. Compared to
[149], they do not assume a zero communication time for tasks mapped to the same
ECU. To validate the schedule feasibility, they adopt WCRT analysis of Zhu et al. [140]
on function level. In our work, critical sections are only part of LET communication
tasks and the run-time of accessing the resource is part of task’'s WCET. Wozniak at
al. [149] denote that due to a high number of variables out-of-memory issues occur,
which causes the MILP solver to fail even for small applications. This occurs because,
in addition to solving multiple problems together, the MILP formulations in both

4.2 Related Work and Problem Analysis | 115

works [148, 149] apply schedulability analysis on function level and assign priorities
to functions instead of tasks. Note that realistic industrial applications are composed
of thousands of runnables. Therefore, Mehiaoui et al. [148] describe an approach to
solve the above problems in two different steps.

In the related work, the majority of approaches that apply mathematical formulations
solve the scheduling problem in the same step with other design problems, such
as the allocation of tasks to cores or bus message scheduling. Despite the influence
that task scheduling has on other design problems and vice versa, it is not practical
for industrial applications to solve them together due to the high complexity and
long solving times of the synthesis problem. These effects are demonstrated also in
the following works. Metzner et al. [150] formalize the impact of scheduling during
solving of task-to-core allocation problem. They assign priorities via DM and do not
focus explicitly on priority assignment but verify the schedulability by integrating
WCRT analysis in the SAT-CP formulation of task-to-core allocation. Zheng et al. [151]
and Zhu et al. [152] propose comparable MILP formulations to assign task priorities
in the same step as the generation of task-to-core allocations and scheduling of bus
messages. To validate the feasibility of the schedule, the authors incorporate the
formulation of Metzner et al. [150] to calculate the WCRTs of tasks, which, as they also
state, it increases the complexity of the formulation and leads to high solving times.
Therefore, the authors describe an approach based on simulated annealing that solves
these problems step-wise. Similarly, Schlatow et al. [153] propose a MILP formulation
to assign priorities in the same step as task-to-core allocations and activation offsets.
They also incorporate WCRT calculation in the ILP formulation.

Wieder et al. [154] consider in their ILP formulation the effects and access delays of
shared resources, i.e., spin-locks. The authors solve priority assignment and task-to-
core allocation of a set of sporadic tasks with constrained deadlines and include the
aforementioned delays in their WCRT formulation. Again, due to the complexity of
constraints and high solving times for realistic applications, the authors propose a
heuristic to solve the above problems. Their heuristic adopts OPA to assign priorities.
To reduce the high solving times caused by the complexity of WCRT calculations in
ILP formulations, Zeng et al. [155] define an optimistic formulation of WCRT, which
validates the feasibility of only the first job of each task. In this case, the assigned
priorities are not always optimal. The complexity of validating schedulability in ILP
formulations using WCRT is also discussed in Zhao et al. [156]. The authors propose
the “concept of unschedulability core” [156, p. 1] to validate schedulability. In our
work, to improve the performance and reduce complexity, the FPS scheduling is
synthesized as a dedicated step and an efficient approach is proposed to validate
schedule feasibility.

Approaches targeting the scheduling of LET applications are described as follows.
Farcas et al. [56] use EDF to schedule LET tasks. Derler et al. [57] increase the schedula-
bility of tasks by loosening up the constraints of LET. They define release times of LET
tasks such that tasks can execute outside the boundaries of their LET intervals. This

116 | Scheduling Design

approach is not practical for realistic applications because it creates a strong depen-
dency between a task’s implementation code and the actual scheduling. To decrease
the preemption interference and high response times of low-priority tasks, Beckert et
al. [80] use the slack-stealing approach, in which the execution of higher-priority tasks
is delayed until the next synchronization point. They achieve this by boosting the
priority of low-priority tasks during their non-preemptive regions, which are defined
between two synchronization points.

Igarashi et al. [157] apply LET for multi-rate applications and describe several design
aspects regarding LET. The authors provide an approach to allocate LET communica-
tion tasks to cores and define their activation schedule such that their execution does
not overlap and memory contentions are avoided. As in this work, they prioritize
LET Start tasks higher than LET End tasks and define their schedule in different steps.
In [157], priorities of tasks are assigned based on the lowest-laxity-first heuristic, in
which tasks with the lowest laxity take the highest priority. Finally, to fulfill end-to-end
delay requirements, the authors reduce the duration of LET intervals to a proportion
of WCETs until these requirements are ensured. Yano et al. [158] follow up on the
work published in [157] for multiple computer clusters and apply the sub-scheduling
approach of [82] to schedule LET tasks.

Although not explicitly targeted in this work, the number of preemptions in low-
priority tasks can be reduced by means of limited preemptive scheduling [36, 37].
Several publications target priority assignment in the same step as the design of
limiting the preemption considering any of the methods described in [36]. For in-
stance, Zeng et al. [159] propose an algorithm to assign priorities and the preemption
threshold [130] based on DM. Their optimization goal is the minimization of the stack
usage caused by preemption. In general, the maximal stack usage depends on the
preemption point within the task. Therefore, defining preemption points between
runnables, as shown in [159], the required maximal stack memory size is reduced.
In AUTOSAR systems, the cooperative FPS [19, 160] is employed to limit preemp-
tion of low priority tasks. Reducing the number of preemptions by scheduling tasks
cooperatively means not only defining which tasks can run non-preemptively, but
also assigning preemption points, i.e., by means of explicit scheduler calls within a
task. An explicit invocation of the scheduler can increase the overhead for context
switching and rescheduling, especially in situations when no active task with higher
priority is waiting in the ready queue to be scheduled for execution. These design
aspects are not targeted in this work and are part of our future work together with the
optimization of the stack memory.

A summary of the related work for preemptive FPS is given in Table 4.2.

4.2 Related Work and Problem Analysis | 117

5
0| o =
1515 %
5| 2| 8| 2
2le |8 R ¢
2 gla (6|0 B
S Sl L|lw|§| 5
o E £ | = = S
o) | &= Q. =]
_g Nh| &8 | & o
e} —~ P}) Q 7
2 mlE|lS|&8| 5
= Al | B | A
Contribution CP/Heuristic | v |V |V | V/ TB
Audsley et al. [133] Heuristic X| v | X | X | WCRT
Davis et al. [134] Heuristic X |V | X | X | WCRT
Garibay-Martinez et al. [137] Heuristic X |V | X | X | WCRT
Garcia and Harbour et al. [139] Heuristic X |V | X | X | WCRT
Huang and Cheng et al. [138] Heuristic X |V | X | X | WCRT
Zhu et al. [140, 141] Heuristic | X | v | X | X | WCRT
Metzner et al. [150] CpP X |V | X | X | WCRT
Bate et al. [146] SA X |V | X | X | WCRT
Hamann et al. [143] GA XV | X X (?)
Samii et al [94] GA X |V | X | X | WCRT
Azketa et al. [142] GA X|v | X | X | WCRT
Mohd et al. [144] GA X|v | X | X | WCRT
Mehiaoui et al. [148] MILP/GA | X | X | X | X | WCRT
Wozniak et al. [149] MILP/GA | X | X | X | X | WCRT
Wieder et al. [154] ILP/Heuristic | X | v/ | X | X | WCRT
Bouaziz et al. [145] Heuristic/GA | X | v/ | X | V/ | SIM
Zeng et al. [155] MILP X |V | X | X | WCRT
Zeng et al. [112, 113] MILP X |V | X | X | WCRT
Zheng et al. [151] MILP X |V | X | X | WCRT
Zhu et al. [152] MILP X |V | X | X | WCRT
Schlatow et al. [153] ILP X |V | X | X | WCRT

118 | Scheduling Design

Zhao et al. [156] ILP/Heuristic | X | X | X | X | UC
Farcas et al. [56] EDF I X XX (?)
Derler et al. [57] (?) VI X XX (?)
Beckert et al. [80] (?) vV |V | X | (o) WCRT
Igarashi et al. [157] Heuristic I XX (?)
Yano et al. [158] Heuristic IO X | X ?)

Table 4.2: Qualitative comparison of approaches for the FPS synthesis problem.

Legend: satisfied (v'), partially satisfied (o), unsatisfied (X), or unknown (?), TS (Time-Slicing),
TB (Time-Budgeting), SA (Simulated Annealing), GA (Genetic Algorithm), SIM (Simulation),
UC (Unschedulability Core).

4.3 System Representation

The schedule synthesis described in this work is applied to applications of each core
separately. The following sections describe the application and the overhead model.

4.3.1 Application Model

The software application consists of n € IN periodic tasks T = {T7, ..., Ty }. Each task of
T is mapped for execution to any of the processing units, i.e., processor cores, defined
as C = {Cq,...,Cp}. Let TC”p = {T1,..., Tyx } be the set of n* € IN tasks mapped for
executiontoa core C, € C,wherel <u <mandm € N. Atask T; € TC”p is referred
to as computation task, where 1 <i < n*.

The number of tasks changes after the integration of LET. In PTP, each computation
task T; is associated with LET Start T? and LET End T tasks. They are called commu-
nication tasks and are responsible for buffering operations. Tasks TP and TF have the
same timing attributes as T;, such as the period P;, the deadline D;, the LET duration
let;, and the periodic offset O;. Let 7§ = {TS, ey T,fu} and 17 = {TE, ..., Tfu} be the
set of LET Start and End tasks mapped to a core C,, € C, respectively. Hence, the set
T{e = T¢ U T¢ defines the set of communication tasks on core C, € C.

In SBP, the IR™ is defined to initialize buffers at the beginning of each global HP. The
duration of the global HP, notated as hp € IN, is defined as the Least Common Multiple
(LCM) of periods of tasks mapped to all cores. The duration of the local HP, notated as
hp" € IN, is defined as the LCM of periods of tasks in 7, where hp" < hp. The period
P,,;; of IR™t ig equal to hp and its offset O;,;; is assigned to zero. Although I Rinit

4.3 System Representation | 119

initializes the buffers with default values at the first occurrence of the HP interval,
assigning O;,;; equal to zero reduces the amount of memory required to store the
schedule table. Otherwise, if O;,;; is assigned equal to hp, a schedule with a duration
of 2 x hp must be generated and stored in the memory.

The WCET of each task TZ.S , TZ.E , and T; are defined as wcetiS , wcetf , and wcet;, respec-
tively. The wcet;,;; defines the WCET of I R™t_In SBP, for each task T; the wcetﬁ”dex
defines the WCET of initializing indexes at the start of task’s execution and wcet!°c!
defines the WCET of copy operations in case of suppressed writes. To simplify the
formalization in schedule synthesis, in case of SBP, wcetf”d” and wcetfocal are assumed
to be part of wcet;. Furthermore, although the wcet; of T; is different between SBP and
PTP, the wcet; is not explicitly annotated for each protocol to simplify the description
of the formalization shown in this chapter.

In one HP interval, each task Tl-S € 18, TiE € ¢, and T; € TC”p is instantiated into

ni’ € IN number of jobs and I R™it into one job. In SBP, the schedule has a duration
of hp because IR has its period equal to hp and hp" = hp and the number of jobs

is defined as nj = %. In PTP, the schedule has a duration of hp" and n} = hg‘.
Depending on the periods of tasks, hp" can equal hp also in PTP. Let]1.5:].,]ZE] and

; define the j* jobs of tasks T° € 1%, TE € 1%, and T; € T“
/] I i S i E

cps Tespectively, where
1<) <ni.

4.3.1.1 Task Activation

Tasks can be activated by the occurrence of events or by the progression of time. In
AUTOSAR, the schedule table concept is defined to activate tasks by the progression
of time, in which activation offsets in form of expiry points are defined to activate
each job released in one HP interval. This work uses the schedule table concept [19]
of AUTOSAR to activate all LET tasks for two main reasons. Firstly, schedule table
offers the flexibility to plan the activation of LET tasks and improve the schedulability.
Secondly, AUTOSAR describes means to synchronize schedule tables of different ECUs
for the purpose of guaranteeing end-to-end delay requirements across multiple ECUs.
This is highly important in LET to ensure time determinism of data exchanged between
LET tasks integrated in different ECUs. In order to distinguish the aforementioned
table from the schedule table that is used by TTS to schedule jobs, the table that
stores activation offsets is referred in this chapter as activation table. The duration of
the activation table equals the duration of the HP interval, which depending on the
LET buffering protocol can be equal to hp or hp". The activation table is configured
to repeat infinitely after each iteration. Definition 4.1 describes the elements of the
activation table.

120 | Scheduling Design

A A l
S
TS Ji l R T,~S Jij >
1 » >
A l A l
T; | Jij | . Tl Jij >
A l A l
TE | JiJE | . ; JiJE >
i rTr 1 rrrrrrrrr| > T T T T T T T T T T 11T 1] >
0 5 10 15 t[ms] 0 5 10 15 t[ms]
(a) Equal activation times. (b) Different activation times.

Figure 4.1: Task execution order in FPS influenced by activation times of LET jobs. Priority
ordering is T? > TF > T,. The red arrows indicate the absolute deadlines of jobs. The gray
and green boxes indicate the start delays and the execution of jobs, respectively.
Definition 4.1: The activation table O of all LET jobs released in one HP is defined as

O =0°U0tuo", 4.1)

where O°, OF, and OC are the set of activation offsets of LET Start, End, and computation
jobs, respectively. They are defined as

> = {0} |V} VTP € i € [1,n"],] € [Ln!]}, (4.2)
= {ofi|VIE, VTF € 1, i € [1,n"],j € [Ln}]}, (4.3)
={0i;[V];j,VT; € 1,0 € [1,n"],j € [Lnf]}, (4.4)
where Ois, i ofj, and o; j define activation offsets of respective jobs | iS,j’]f]-, and [; ;.

In FPS, assigning higher priority to communication tasks than to computation tasks is
necessary but not sufficient to ensure the communication requirement of PTP. Hence,
in FPS, different from TTS, the LET requirements cannot be ensured by scheduling
alone, but by considering as well task activation times.

Figure 4.1 shows an example of the execution order between jobs J? i] E and J; -
In Figure 4.1a, jobs are activated at the same time. Job] executes before job Ji

because the priority of task TF is higher than the priority of task T;. According to LET
semantics, the execution of job | ZE must occur right before the end of its LET, i.e., at
time 15ms and after the termination of job J; ;. In this case, the semantics of LET are
not fulfilled. As shown in Figure 4.1b, by changing the activation time of job]E] ata
later time, the execution order is ensured and Requirement 4.1 is fulfilled. The time
when jobs are activated impacts not only the communication requirement of LET but
as well the overall schedule feasibility. Activation offsets must be assigned such that

4.3 System Representation | 121

all jobs finish their execution before their deadlines. Job | fj, shown in Figure 4.1b,
misses its deadline if the activation offset is assigned to 13 ms or 14 ms.

The activation offset o? f of each job | Z.S]- of each task T? € 7¥ and the activation offset
0;,j of each job J; ; of each task T; € rg‘p are defined based on the period P; and periodic
offsets O;, as
0f; =0+ (j—1)* P ArS; = of, (4.5)
0ij=0i+(j—1)* P Arij=0;}, (4.6)

S

where ris, f and r; ; define the release times of J?. and J; j, respectively.

]

Activation offsets of LET End jobs are defined during FPS and TTS schedule synthe-
sis such that the communication requirement is fulfilled and a feasible schedule is
constructed. The activation offset ofj of each job | 1E] of each task TF is bounded as

E E E
0ij < 0j; < dij ATj; = 0j (47)
where the d; is the absolute deadline defined as d; ; = ris i + D;.

A key benefit of assigning activation offsets to LET End jobs rather than one periodic
offset to their respective LET End task is that the schedule capacity can be utilized
better and LET End jobs can execute closer to the end of their LET intervals. The offset
assigned to a LET End task shifts the activation of its LET End jobs by a fixed amount
of time in each periodic occurrence. Whereas, in case of activation table, different
activation times can be defined for different jobs of the same LET End task. In addition,
the problem of assigning offsets is simplified when activation tables are used.

4.3.1.2 Constraints for SBP Semantics

Periodic offsets assigned to LET tasks shift the occurrence of jobs and the occurrence
of their LET intervals. In case of asynchronous offsets, the LET end time of the last
jobs can exceed the boundaries of a HP interval. This means that the last job of a LET
task could execute in the next HP interval. In SBP, jobs instantiated in one HP interval
must not execute in the next HP interval because at the start time of each HP interval,
the IR™! task must execute before the start of all LET jobs released in the current HP
interval. If LET jobs of the previous HP interval have not finished execution, then the
job of IR released in the current HP interval can preempt these jobs, which leads to
data stability issues and wrong buffering behavior. The priority of IR™* cannot be
defined lower than the priority of LET tasks because buffer initialization must occur
before task execution. Figure 4.2 shows an example of three asynchronously activated
tasks. LET intervals of jobs Ji, and], 1 exceed the HP duration of 10 ms. Hence, the
execution of job], 1 spans in the next HP interval. At time 10ms, jobs J;3 and I Rt
are released. To preserve the buffering behavior, job IR} must execute before J; 3 and

122 | Scheduling Design

hyper-period
A
]Ril’lit IR]init R
A) T
Ji Ji
Y-vi 1 A | >
A A len T
m B }
Tk k1 kz. | L
A let,,
I,
TpIIIII T T 1 |p|1||||||=
0 5 10 15 t [ms]

Figure 4.2: Validity of Task Attributes. The gray and green boxes indicate the start delays and
the execution of jobs, respectively.

after job J, 1 has finished its execution. While this situation can be handled in TTS
by delaying the execution of the IR job and the computation jobs released in the
current HP interval until all jobs in the previous HP interval have terminated, this is
not possible in FPS because computation tasks are scheduled fully preemptively and
can be preempted by IR,

Because the schedulability of jobs in the current HP interval is affected by the execution
of jobs of the previous HP interval, the schedule must be built in both scheduling
mechanisms for a duration that is twice as long as the duration hp of the global
HP. This can increase the time to synthesize the schedule and the duration of the
schedule table. Hence, SBP is applicable for tasks with periodic offsets and LET
interval duration that satisfy the condition in Equation (3.8) defined in Section 3.4.2.
Equation (3.8) enforces that all jobs released within one HP interval have the end
time of their respective LET intervals less than the start of the next HP interval. If
the periodic offset of a task equals the period, then the entire LET interval of the
last job occurs in the next HP interval. Also in this case, the buffer schedule must
have a duration of 2 * hip and the period of IR™* must equal 2 * hp, which increases
the memory demands to store the buffers and the schedule table. The condition
in Equation (3.8) is not a limitation of the schedule synthesis algorithms proposed in
this work, but a constraint for correct buffering behavior of SBP.

4.3.1.3 Constraints for PTP Semantics

The dataflow and value determinism of LET means that consumer jobs receive outputs
produced by dedicated producer jobs exactly at the start and end time of their LET

4.3 System Representation | 123

intervals. In the scheduling design phase, there are two key aspects that are essential
in PTP regarding dataflow and value determinism, as described below.

1) The Requirement 4.1 of PTP must be ensured by scheduling. The execution order
among simultaneously active LET Start jobs of different tasks is not essential
in terms of determinism. Nevertheless, they must be scheduled to execute all
before their computation and LET End jobs. Hence, if several LET Start jobs of
different tasks are active at the same time instant, then they are scheduled to
execute as a group first before the start of any of their respective computation
jobs. Similarly, the execution order of simultaneously active LET End jobs of
different tasks is not important among them as long as they execute all before
the end of their LET intervals and after their respective computation jobs have
finished their execution.

2) Simultaneously active LET Start and LET End jobs of different LET tasks that
have a consumer—producer relation must execute such that the dataflow and
value determinism is ensured. For instance, in coinciding LET intervals, a LET
Start job of the consuming LET interval overlaps with the execution of a LET
End job of the producing LET interval. In this case, the LET Start job may or
may not read the outputs produced by the LET End job. This depends on the
job that is scheduled to execute first. This form of LET interval overlapping
occurs for instance between LET intervals with non-harmonic duration and for
non-harmonically and asynchronously activated LET tasks. Hence, if LET Start
and End jobs of two different LET intervals have coinciding execution, then
according to LET semantics the LET Start job must always execute before the
LET End job, because the LET Start job must read the output of the previous
occurrence of producer’s LET interval. A schedule cannot always be found under
such constraint. Therefore, this form of overlapping between LET intervals must
be avoided during the design of LET intervals.

An example describing the non-harmonic overlapping between LET Start and End
jobs is given in Figure 4.3a. According to LET semantics, job | lf , must not read the
output of job | iSJ but the initial value, which in this case is the previous output. To
avoid this situation,]1.5:1 can be scheduled to execute after]If, ,» which is not possible
because the deadline of | ,f , cannot be fulfilled. A feasible schedule is only found if the
initial semantic of LET is relaxed and jobs]fl is scheduled to execute before jobs | 52
and |]f ,- However, this is against the main purpose of using LET because dataflow and
value determinism is partially fulfilled. One way of solving this problem and provide
determinism is by changing the duration of LET intervals as shown in Figure 4.3b or
by changing the periodic offset as shown in Figure 4.3c. The design of LET attributes,
such as the duration and periodic offset, is not the focus of this work. Therefore, the
proposed schedule synthesis is applicable under the assumption that the end of one
LET interval does not overlap with the beginning of another LET interval, as is the
case of Figure 4.3a.

124 |

Ty

Scheduling Design

Ji1

3

mr |]

< semantic

N
»

\ violation

3
Ji2 |

ol

(a) Coinciding LET Start and End jobs. LET semantics are violated for jobs J£, and

] ,f ,- LET interval duration is equal to period for both tasks T; and T.

T;

T, T [Jes®

A

S
Ji,]

¥
4

pra B
! H

.« semantic

[fulfilled

5
Ji2 |

ol

(b) Changing the duration of producer’s LET interval. LET interval duration is
equal to the period for Ty and less than the period for T;.

T;

Ty

— »
y : :
S 5
. semantic :
: g 1 fulfilied :
| S
'@ [af] [-_J_.
I

(c) Changing the periodic offset of consumer’s LET interval. LET interval duration
is equal to period for both tasks T; and Tj.

Figure 4.3: Value and dataflow determinism in PTP for coinciding LET intervals.

4.3 System Representation | 125

4.3.2 Overheads Model

The schedule synthesis of this work considers the impact of different OS operations.
Three types of overheads are defined and considered: the timer interrupt overhead,
the task termination overhead, and the preemption overhead. The timer interrupt
overhead refers to the time required by the timer to activate a job. The preemption
overhead consists of the context-switching time caused by preemption. Whenever a
task is assigned for execution, the running job is preempted, including the idle job,
and the context change occurs before the preempting job starts its execution. The
preemption overhead is otherwise referred to as context-switching overhead. The
termination overhead defines the time required by the OS to terminate a job. Further OS
operations such as for example the activation of tasks by explicit call of ActivateTask(),
or SetEvent() and WaitEvent() functions [19] are not considered. However, if such
functions are called in the context of a task, their run-time overheads are assumed as
part of task’s WCET.

The timer interrupt is instantiated each time one or multiple tasks are released for
activation. The average execution time of the timer interrupt is notated as ov,. It
includes the time to activate one task and the time involved in counter activities such
as for example assigning the next compare value of the counter. Let I;, denote the
timer interrupt that handles the activation of tasks allocated for execution on core C,,.
This work assumes that if an occurrence of I}, activates more than one task at the time
of its release, then the execution time of this occurrence is a multiple of 0v, and the
number of released jobs. Note that when a task is activated, a job is released.

The handling of context switches and task termination varies among different OS
implementations and configurations. Typically, the context-switching operation is
not a standalone step but is part of different OS operations. For example, because
AUTOSAR uses a FPS scheduler to schedule tasks, the context-switching operation is
associated with the execution of the scheduler, which takes scheduling decisions such
as assigning for execution the next active job. The operation of saving and restoring
of task contexts is atomic and occurs non-preemptively. Therefore, the run-times of
enabling and disabling interrupts is as well associated with the context-switching
operation. Additionally, if timing protection is enabled [19], then a switch from user to
OS mode is performed and timing and memory protection activities take place. Hence,
a context-switch involves in addition to saving and restoring the contexts of jobs as
well operations such as for instance enabling and disabling of interrupts, setting up
timing protection activities, management of OS data structures, saving of the stack
pointer in the control block, switching to the system’s stack pointer, and scheduler
execution. This happens as well because in FPS a preemption takes place when a task
or interrupt is activated or if an OS Application Programming Interface (API) function is
called in a task’s context. In TTS, this is not always the case because a preemption can
happen as well when the execution time interval assigned to a task ends and the time
interval of another task begins. Considering only the hardware context-switching

126 | Scheduling Design

time, i.e., the time to save and restore registers is not enough to address the impact of
the OS in the schedule construction. Therefore, in this work, the context-switching
overhead includes the hardware context-switching time and the execution time of the
scheduler and of any required OS operation occurring during a context change.

The termination operation is called in the end of a task’s execution. It includes several
operations such as removing the task from the schedule queue, changing the context
between the terminating job and the next running job, checking if resources are re-
leased by the terminating task, and the call of the scheduler. Because the termination
operation is explicitly called in the context of a task, its run-time is often included
in WCET calculations. In this work, the run-time of the termination and context-
switching operations are abstracted outside of task WCETs. Let 0v; and ov.s define
the execution time that is involved at the termination of a job and the execution time
of one context-switch, respectively. The hardware based context-switch is included
in 0v;. Because the context-switch and terminate operation include several activities,
in practice they are not fixed for each preemption or termination point. In this work,
they are assumed as constant to simplify their handling during schedule synthesis.
This work assumes that estimations of activate, terminate, and context-switching
run-times are defined before schedule synthesis either by WCET calculations or by
measuring these operations using commercial tracing and debugging tools. A dedi-
cated interrupt I/ is defined to handle the context switch between two tasks on core
Cu. The I is invoked at the start, preemption, and termination of every LET task
to perform the necessary context change. At the termination of a job, the I, has an
execution time of 0v;. At the start and preemption of a job, I% has the execution time
of 0ves. The I is an abstraction defined to isolate 0v; and 0v,s operations.

Figure 4.4 shows an example of two tasks scheduled by FPS. Task T; has higher
priority than task T,. Tasks execute on the same core C,, and their activation is handled
by the timer interrupt If;, which is triggered for activation at times O ms, 5ms, and
10 ms. In each occurrence of I}, a context-switch operation takes place before the start
of 1. After I}, terminates, a context switch takes place. At time interval 1.5ms —2ms
the context switch occurs between I} and T;. The actual activation times of T; and
T, are not the same and differ from the start time of the timer interrupt because
they are set in active state during its execution. In this example, the WCET are as
follows: wcet; = 1ms, wcety = 2.5ms, wceet}, = 1ms, and 0v,s = 0v; = 0.5ms. Hence,
the utilization of Ty, Ty, 1, and I, are 30 %, 25 %, 35 %, and 20 %, respectively. By
considering timer and context-switching overheads the system is fully utilized. In
case these overheads are not addressed during schedule synthesis, then the schedule
is planned assuming that the system has 55 % of utilization.

The start and preemption delays caused by the execution of the timer interrupt, by higher
priority tasks, and by the described overheads define the actual start and end times of
tasks. These delays are considered during schedule generation of both TTS and FPS.
In TTS, overheads are added during the full construction of the schedule table. In FPS,

4.4 Schedule Synthesis Approach | 127

A EEEEERNE REERENNE |
A “iiiiAT

T . —
A AT

T, W i N N
0 10 t[ms]

Figure 4.4: Example of task activation and context-switching. Tasks T; and T, have respective
periods 5ms and 10ms. The timer interrupt I}, is triggered at times 0 ms, 5ms, and 10 ms.
The context-switching occurs before and after execution of the timer interrupt. The timing
information is: wcet; = 1ms, wcet, = 2.5ms, wcet}, = 1ms, 0v,s = 0vy = 0.5ms. The actual
activation of jobs, indicated by the red arrows, occurs during the execution of the timer
interrupt. The activation jitter of every job is the time distance between occurrence of the black
and red arrows. The white and light blue boxes in the I, indicate the o0v.s and 07y, respectively.
The green boxes indicate the execution of tasks and the dark blue boxes the execution time of
I},. The green boxes and the gray boxes indicate the preemption and start delays, respectively.

they are added during schedule verification, such that the assigned priorities to tasks
lead to a valid schedule.

4.4 Schedule Synthesis Approach

This section describes the methodology of constructing the schedule of LET tasks for
both FPS and TTS scheduling mechanisms.

4.4.1 Methodology

The schedule synthesis methodology and workflow is described in Figure 4.5. Al-
though TTS and FPS are conceptually different scheduling strategies, the proposed
methodology of constructing the schedule of LET tasks is applied for both of them. To
improve the run-time performance, the schedule is constructed step-wise and for each
core separately. Hence, if the software application has tasks distributed to multiple
cores, then the schedule is generated for tasks of each core individually. The approach
described here offers the possibility to construct, although not optimal, the schedule of

128 | Scheduling Design

Input:
Software
Application

Step 1:
Timer Schedule
[
Activation Blocks

L Step 2: o
Communication Schedule (Heuristic)

I
Communication Blocks

(Heuristic)

Step 3: . .
L Computatieg 1 Schedule (Constraint Programming)

L Step Final:

Postprocessing

/ | Output:
Scheduled
Software
Application

Figure 4.5: Schedule Synthesis Workflow and Methodology.

communication tasks running on different cores such that inter-core communication
effects and overheads caused by data stability mechanisms are fully eliminated.

The schedule of LET tasks is constructed in three main steps. In step 1, the schedule
of the timer interrupt is generated for all its occurrences released in the defined HP
interval to activate computation and LET Start tasks. Because the timer interrupt
executes with higher priority than LET tasks, start and end times of all its occurrences
are generated to define start and preemption delays that they cause to communication
and computation jobs. The schedule of the timer interrupt is used as input for the
next steps. In step 2 and step 3, the schedule of communication and computation tasks
is constructed. To improve the performance, the proposed TTS and FPS schedule
synthesis algorithms generate the schedule of communication and computation tasks
in two separate steps. The schedule of communication tasks is constructed first
because these tasks execute at higher priority than computation tasks and must
satisfy Requirement 4.1. The schedule of computation tasks is constructed after the
schedule of communication tasks is generated and their execution is allocated by the
algorithm to the remaining time intervals that are not occupied by communication
jobs. In the final step, the resulting schedule is post-processed and exported to a file
with the Best Trace Format (BTF) format [161] for further evaluation of the resulting
solution. Although the step-wise approach reduces greatly the schedule synthesis
performance, it enforces certain limitations and assumptions, which are described
throughout this chapter.

4.4 Schedule Synthesis Approach | 129

To avoid inconsistent buffering operations and reduce resource requirements for stack
memory and processing time caused by context switches, communication tasks are
not allowed to be preempted either by other communication tasks or by computation
tasks. Only the timer interrupt or high-priority interrupts can preempt these tasks.
Start delays of the timer interrupt caused by the execution of LET tasks cannot be fully
avoided. These delays occur when LET tasks use during their execution the suspend
interrupt locks [19] of OS to ensure atomic operation on shared data. Constructing
the schedule based on WCET, which is highly necessary, reduces the possibility to
know precisely in which position of task’s execution time suspending and resuming
of interrupts occurs. Therefore, during schedule generation, either the pessimistic
assumption is taken that at preemption time of a job the timer interrupt is always
delayed by a fixed amount of time, or its execution is always shifted to the termina-
tion time of any running job. The full shift of timer interrupt’s execution would be
valid in terms of scheduling as long as the timer interrupt starts the execution at the
termination of the job before the start of any other active job. However, in practice the
timer interrupt has a higher priority than any OS task. Therefore, the preemption of
LET jobs occurs as soon as the resume interrupt lock operation is called by these jobs.
The preemption caused by the timer interrupt cannot be fully avoided for computation
tasks because activation of tasks must take place at any condition. Otherwise, if the
execution of the timer interrupt is postponed for to long, then the activation of tasks
or setting of specific OS events are also delayed and the activation times are no longer
deterministic. This work assumes that only communication tasks use suspend interrupt
locks. Hence, the schedule of the timer defined in step 1 is adjusted in step 2 by a fixed
time delay defined as 0v;¢s.

Computation tasks are allowed to preempt and delay each-other or be preempted
and delayed by communication tasks. Applications targeted in this work are highly
utilized especially because of the increased load caused by LET semantics. If pre-
emptions are fully disabled, then a valid schedule is unlikely to be found for such
applications. Therefore, the schedule of computation tasks is constructed in a way
that preemptions are enforced by the constraint solver whenever necessary. Thus,
the schedule synthesis algorithm provides a valid, fully non-preemptive schedule for
computation tasks, if one exists. In SBP, the algorithm of step 2 is used to build the
schedule of the IR™.

A straightforward algorithm based on DM heuristic is described in step 2 to con-
struct the schedule of communication jobs, while satisfying timing, communication, and
resource requirements. A CP approach is not applied for these tasks, although possi-
ble, because the desired solution is achieved faster without optimization strategies
provided by CP algorithms. The proposed algorithm ensures that communication
jobs execute generally non-preemptively, unless preempted by the timer interrupt,
and close to the boundaries of their LET intervals. Preemptions caused by the timer
interrupt are avoided for LET End jobs by assigning their activation offsets, during
generation of their schedule, such that their execution does not overlap with the
execution of any timer’s job.

130 | Scheduling Design

The schedule of computation tasks is constructed in step 3 via CP techniques because
multiple constraints and requirements must be solved while a feasible schedule is
searched. These techniques are known to solve multiple constraints and reduce the
complexity of the problem, which is not possible in heuristic-based algorithms. Fur-
thermore, CP techniques offer the possibility to efficiently optimize the schedule of
computation tasks regarding preemption overheads while providing a feasible sched-
ule in a reasonable amount of time. The efficiency of CP techniques for scheduling
problems is already showed in Section 4.2.

4.4.2 Start and Preemption Delays

The execution of the timer interrupt Ij, and the occurrence of context-switching and
terminate overheads causes start and preemption delays to jobs of LET tasks. Similarly,
LET tasks cause start and preemption delays to each-other. The start delay of a job
defines the duration between its activation, i.e., release time and the start of execution.
The preemption delay caused by execution of the timer or other LET tasks defines the
total time duration in which a task is in preemption state. Start and preemption delays
increase the response time of tasks and in certain cases they can lead to deadline
violations. Therefore, they must be addressed and minimized during schedule synthe-
sis. This work distinguishes between the preemption delays and preemption costs. The
former ones refer to the time and memory overheads caused by the context-switching
between jobs. To handle preemption and start delays during FPS and TTS schedule
synthesis, the concept of activation and communication blocks is defined, as described
in Sections 4.4.2.1 and 4.4.2.2.

4.4.2.1 Activation Blocks

Activation blocks are defined to simplify the management of activation and preemption
delays in schedule synthesis of LET tasks. They are defined to isolate the execution
of the timer interrupt from the execution of LET tasks. An activation block defines a
time interval in which the execution of one or multiple instances of the timer interrupt
I, take place. Definition 4.2 annotates elements of an activation block.

Definition 4.2 (Activation Block): Let A" be the set of activation blocks on core C, € C
calculated based on release times of all jobs executing on core C,, where u € IN. The
a? denotes the s-th activation block, where s € IN. The a’.start and a¥.end define the
start and end time of the activation block a¥, respectively. The duration of each block a¥ is
constant and defined as the difference between af.end and a¥ .start.

The duration of an activation block is defined the number of unique release times of
jobs and the overlapping of timer interrupt instances. In each unique job’s release

4.4 Schedule Synthesis Approach | 131

time, one instance of the timer interrupt is released to handle the activation of all jobs
released at this time. If several jobs release at the same time instant, one corresponding
activation block is created, which has the duration equal to the sum of two context-
switches overheads and the execution of one timer interrupt instance, defined in this
case as t * 0v,, where t is the number of activated jobs. Part of the activation block’s
duration is also the context-switching overhead that is involved to switch the context
between the timer interrupt and any running job, including the idle job. The minimum
duration of an activation block is 2 * 0v.s + t * 0v,. If multiple instances of the timer
interrupt overlap, one activation block is created by merging all overlapping blocks
into one. Therefore, the duration of an activation block is defined by the number of
activated jobs, the number of timer instances, and the number of context switches.

Activation blocks are calculated statically before the generation of task’s schedule
based on unique release times of all jobs activated within one HP, defined by config-
ured task periods and periodic offsets, and their respective overlapping. Activation
blocks of LET End tasks are calculated after the assignment of their activation offsets.

Figure 4.6 shows two examples of activation blocks defined based on the described
approach. The example of Figure 4.6a depicts the start delay caused by two unique
activation blocks. The first block isolates the execution run-time of two occurrences
of the timer interrupt and the run-time overhead for three context-switches. The first
instance of the timer interrupt in aj activates jobs | lS] and J;;. The second timer’s
instance activates job | ,f ;- A timer interrupt instance is released in each unique release
time of jobs. The second activation block a3 isolates the activation of jobs | 1E] and J, ,fl.

Similarly as in the first activation block, the third and fourth instances of the timer
are activated in different times, which correspond to the release times of jobs | ZE] and

JE,. Figure 4.6b shows an example of preemption delays caused by activation block
ay tojob J; ;. The actual activation of jobs happens during the execution of the timer
interrupt. In these examples, the actual activation of jobs is indicated by red arrows.

4.4.2.2 Communication Blocks

Communication tasks are scheduled with higher urgency than computation tasks.
To improve the schedulability of the system and to ensure that communication jobs
execute close to the release and terminate of their LET intervals, the preemption of
computation tasks is allowed and handled during schedule synthesis of computation
tasks. The notion of communication blocks is used to isolate the execution of communica-
tion jobs during schedule synthesis of computation jobs. By abstracting the execution
of communication jobs within communication blocks, handling of start delays and
preemptions during schedule synthesis of computation jobs is simplified and the time
to synthesize the schedule of computation jobs is reduced. Reducing the time that it
takes to synthesize and optimize the schedule of computation jobs is highly necessary
especially for large applications, in which the enormous amount of jobs in one HP

132 | Scheduling Design

v

v

1 —
]
!

‘]l_)jE T A :
Y tbm.

Time

v

(a) Activation blocks with different releases.

a; a“ a';

IMCSDDDDD 00 00000
mim m Tll

v

. >
il T “ .l:

Time

~
~.
t
—»

(b) Activation blocks with preemption.

Figure 4.6: Examples of activation blocks created by activation of LET jobs executing on the
same core. The dark blue boxes indicate the execution time of the timer interrupt. The white
boxes indicate the time of the context switch and the light blue boxes indicate the duration of
the terminate operation. The green boxes indicate the execution time of jobs. The back and red
arrows pointing up indicate the planned and the actual release of jobs, respectively. The red
arrows pointing down indicate the absolute deadline of jobs. The start and preemption delays
are indicated by the gray and green pattern-filled boxes, respectively.

4.4 Schedule Synthesis Approach | 133

=
g
O
-
L]
-
-
—
-
=
-

=~
'

E
Jij

£
Jki

>
>

Time

(a) Composition of communication and activation blocks in PTP.

I“CSmD !ﬁ [
AL IR

Time

(b) Composition of communication and activation blocks in SBP.

Figure 4.7: Examples of communication blocks. The dark blue boxes indicate the execution
time of the timer interrupt. The white boxes indicate the time of the context-switching and the
light blue boxes indicate the duration of the terminate operation. The green boxes indicate
the execution time of jobs. The back and red arrows pointing up indicate the planned and
the actual release of jobs, respectively. The red arrows pointing down indicate the absolute
deadline of jobs. The start and preemption delays are indicated by the gray and green pattern-
filled boxes, respectively.

134 | Scheduling Design

interval increases the quantity of variables and constraints that must be solved by the
CP solver. Definition 4.3 annotates elements of a communication block.

Definition 4.3 (Communication Block): Let cc" be the set of communication blocks on
core Cy, € C defined based on the schedule of communication jobs executing on core Cy,
where u € IN. Let cc € cc* be the ' communication block, where r € IN. The cc.start
defines the start time and the cc} .end defines the end time of cc}'. The duration d} of cc}
is defined as d}} = ccl.end — cc}}.start.

Unique communication blocks are calculated statically after the schedule generation
of communication tasks. In PTP, a communication block can have one or multiple
activation blocks and the execution of at least one communication job. In SBP, except
of the first communication block, the rest of communication blocks equal activation
blocks because LET communication tasks are not present in SBP. The first communi-
cation block contains the execution of the IR™. In SBP, computation jobs are either
preempted by the timer interrupt or by other computation jobs. It should be noted
that an application may have both SBP and PTP protocols integrated to support LET.

Figure 4.7a shows an example of five jobs activated and executed on core C,. The
example depicts communication block composition for the PTP case. Activation of
communication job | ZS] and computation job J; ; is handled by the first instance of the
timer interrupt I} and is encapsulated in the activation block a}. The communication
block cc} consists of the duration of the activation block a7, the execution of commu-
nication job | fj, and the context-switch involved at the termination of job | ZS] The
communication block ccf encapsulates the activation block 25 and the execution of
communication job] ,f ; followed by one context-switching operation. The commu-
nication block ccj encapsulates activation block a5, the execution of communication
jobs]lE] and]lf,l' and the context-switching overheads included in their respective
termination operations. The occurrences of I} that correspond to the termination of
computation or communication jobs contain 0v; as run-time.

Figure 4.7b shows an example of communication block composition for the SBP. The
duration of communication blocks ccf and cc5 consist of the duration of activation
blocks af and a3, respectively, which encapsulate the activation of jobs J; ; and Jj ;.

The duration of each communication block includes the context-switching operation
that is required to switch to the execution of the first job in the block and the context-
switching operation that is required to switch the execution to the next job after the
communication block. This approach simplifies the schedule synthesis of computa-
tion jobs such that context-switching overheads are not explicitly handled in case a
computation job starts or terminates at the end or the beginning of a communication
block. In certain cases, if the end of a communication block corresponds to the start
of another communication block, then blocks are merged to one. The final set of
communication blocks considered in the schedule synthesis of computation jobs does
not have overlapping communication blocks.

4.5 Time-Triggered Schedule Synthesis | 135

4.5 Time-Triggered Schedule Synthesis

The TTS scheduling of this work is based on the time-triggered scheduling used in the
avionic domain. The task set of avionic applications is basic in nature and task’s pre-
emptions are generally avoided by constructing a non-preemptive schedule. However,
this is not the case for the automotive applications targeted in this work, in which
preemption is a necessary mechanism used to ensure that timing and communication
requirements are fulfilled. Therefore, the proposed TTS scheduling synthesis approach
enables preemption of tasks by defining in the schedule table points of time in which
tasks can resume their execution.

TTS is an effective way to deterministically schedule LET tasks and to ensure their
timing, communication, and resource requirements in design time and during their target
execution. In TTS, scheduling decisions are taken through the progression of time
based on start times defined in the schedule table for all the jobs released in the HP
duration. Whenever the time for starting a job is reached, the scheduler allocates the job
for execution. The running task is preempted, its context is stored, and the context of
the new running task is loaded. In case a task finishes its execution before the planned
time, then the idle job executes until the start time of another job begins. After a task is
preempted, it is resumed at dedicated resume times defined in the schedule table.

In this work, the schedule table, denoted as 5%, is constructed at design time for all
periodic tasks. It contains the start and resume times of all the jobs released and
executed within the HP interval. The schedule table of TTS is not the same as the
AUTOSAR schedule table concept [19]. The former one is defined to activate tasks
based on the progression of time but scheduling decisions are taken based on priorities
by the FPS scheduler. In TTS, LET tasks are scheduled independently of how they
are activated, i.e., either by events or by an AUTOSAR schedule table. Definition 4.4
describes the TTS schedule table.

Definition 4.4 (TTS schedule table): The TTS schedule of LET tasks is a composition of
start and resume times of all the jobs released in the HP interval.
The schedule table S* is defined as

S* =85 USEUSCURY UREURC U st} U {rt"it}, (4.8)

where S° and RS are the set of start and resume times for all LET Start jobs, respectively.
The SE and RE are the start and resume times of all LET End jobs. The S¢ and RC denote
the set of start and resume times of all computation jobs.

$° = {stZ VI3, VT} € 1§,i € [1,n"],j € [Ln]} (4.9)

ijr

S = {st;; VI, VTF e tf i e [1,n"],j € [Lnf]} (4.10)

ij7

136 | Scheduling Design

SC = {st;;|V];,VT; € T4,i € [1,n"],j € [L,n]} (4.11)
R® = {rtiS,jN]iS,j, VTP € t&,i € [1,n"],j € [1,n%]} (4.12)
RE = {rtfjW]fj, VTF € t¥,i € [1,n"],j € [1,n¥]} (4.13)
RE = {rt;j|V];j,VT; € t,,i € [1,n"],j € [1,n]} (4.14)

The st defines the start time of the first job of IR™"* and rti" defines the set of resume
times of the first job of IR™*. The st? i stfj and st; ; denote the respective start times of

jobs I3, Jf; and J;j. The n}* € N defines the number of jobs released in one HP interval.

The rti;j = {rt;j(ps)|pr € [1,n5],nG € N} defines the set of resume times for job J; j,
and rt; j(p:) denotes the pi-th resume time of job J; ;.
The rty; = {rt3;(pt)|p € [1,n3],n7, € N} defines the set of resume times for job J7,,
and rt7.(py) denotes the py-th resume time of job J7.

The rtf; = {rtf:(pt)|pr € [1,ny],ny; € N} defines the set of resume times for job Jf,,

and rtE.(py) denotes the py-th resume time of job | ZE]

/]

Because a computation job can be preempted multiple times during its execution,
multiple resume times are defined and stored in the schedule table such that the com-
putation job is resumed again after each preemption until it completes its execution.
In general, the number of resume times corresponds to the number of times that
a job is preempted, under the assumption that the job takes exactly WCET time to
execute. If the job finishes earlier than the planned WCET time, then the resume
times occurring after this time are ignored by the scheduler. Hence, the TTS scheduler
resumes for execution only jobs that are active at the time the resume time is reached.
If computation jobs are not preempted, then the set of resume times R¢ is empty. The
same applies for communication jobs.

As described throughout this chapter, communication tasks are not allowed to be
preempted by each other or by computation tasks. Instead, they can be preempted
by the timer interrupt I}, or any other software or hardware interrupts. To resume
their execution, resume times are stored in the schedule table. If communication jobs
are not preempted, then sets R and RE are empty. In this work, the resume times are
calculated statically based on the constructed schedule trace after the schedule of LET
tasks is generated.

In TTS, the schedule generation problem refers to the construction of the schedule table
S*, such that timing, communication, and resource requirements are fulfilled. The
schedule synthesis algorithm described in Section 4.5.1 constructs the schedule of
communication tasks. This algorithm is applied when any or both PTP and SBP
protocols are used to integrate LET semantics. In case of SBP, it constructs the schedule
of the IR™!, which during synthesis is treated as a LET Start task. The schedule

4.5 Time-Triggered Schedule Synthesis | 137

synthesis described in Section 4.5.2 generates the schedule of computation tasks for
PTP, SBP, and a combination of both protocols for the same application.

4.5.1 Scheduling of Communication Tasks

This section describes a straightforward heuristic-based algorithm to assign start and
resume times of all communication jobs. The algorithm’s flow is described by three
main steps.

St 1 The activation blocks that isolate the execution of the timer are calculated to
handle the start and preemption delays that the timer interrupt causes to LET
Start jobs. These activation blocks include only the time it takes to activate LET
Start and computation jobs and the respective terminate and context-switch
delays. Activation blocks that result from activation of LET End jobs are created
only during offset assignment and schedule generation of these jobs.

St 2 The schedule of LET Start jobs is constructed considering preemptions and
delays caused by activation blocks. The execution and activation of LET Start
jobs is encapsulated in communication blocks, which are calculated at the end of
their schedule synthesis and are used during schedule generation of LET End
jobs.

St 3 The schedule and activation offsets of LET End jobs are generated. Activation
offsets are assigned such that LET End jobs are never preempted or delayed by
the occurrence of any timer job or other communication jobs.

Algorithm 5 constructs the schedule of LET Start jobs and Algorithm 6 generates the
schedule and activation offsets of LET End jobs. Both algorithms assign start times
to every job such that the end of a job corresponds to the start of another job or to
the start of an activation block. The assignment of start times to LET Start jobs does
not follow any ordering, besides the ordering defined by the time that these jobs are
released. A particular ordering of LET Start jobs is not enforced because if they are
released at coinciding time intervals then they must all be scheduled in any order
before the execution of their respective computation and LET End jobs. The end times
of the jobs are calculated during schedule synthesis to ensure that their WCETs are
entirely scheduled within their deadlines.

For each communication job]1-5]. of each task TiS € Tg, let the start time stf i the end time
etf i and the preemption time ptf i be the scheduling attributes solved by Algorithm 5.
For each communication job | lE] of each task TiE € 1¢, let the start time stf]-, the end time
etfj, and the offset oiEj define the scheduling attributes that are solved by Algorithm 6.
Although the release of a job does not occur exactly at the time of its activation offset,

138 | Scheduling Design

u u
ay a s
— 5
; - weet; ! ov,
A ‘ — l
L)
s | |
Jij : «a',» .
s .S S op S5 L weet” ov,
Tij St j ptij et 4 > l
L)
E L]
Jz/ T - T >
E E E E |
0ij =Tij Slij et;j d,',j Time

Figure 4.8: Scheduling parameters jobs | lS/ and]lE] of LET tasks T? and TF, respectively.

for simplicity the activation offset 01}.5]- of each job | f] is defined equal to its release time

rfj. The scheduling attributes are depicted in Figure 4.8.

4.51.1 Scheduling of LET Start Jobs

The execution of LET Start jobs is delayed either by the activation block in which they
are released, by other activation blocks, or by the execution of other LET Start jobs.
The bounds and values of the start time stf, j and the end time etf, j of every job | 15] of

each task TZ.S € 1¢ are defined as
stislj € [ag.end, d;j) N etisjj = stislj + wcet? + ptisjj A etislj <dj. (4.15)

The element a defines the activation block in which job | Z-S]- is released. Because
job | Z-S]- can be preempted by the timer interrupt, which executes to activate other
LET Start jobs, the time interval [stisl i etiS/]-] includes the preemption delays ptf/ i The

termination overhead that follows after a job finishes the execution is considered
during assignment of the start time of the next executing job.

Algorithm 5 takes as input the sorted set of unique release times of all LET Start jobs
US, the set of all activation blocks A%, and the set J° of (K,V) pair elements, where
K is the release time and V is the set of LET Start jobs released at time K. The set of
activation blocks A" considers only the occurrences of the timer interrupt, that handle
activation of LET Start and computation jobs, and their respective context-switching
times at the start and end of each occurrence. Algorithm 5 generates the schedule of
LET Start jobs as follows. For every release time ¢ in the set of unique release times U,
generate sequentially the schedule of all LET Start jobs that have release time equal to
t. The assignment of start times is handled by the Ist variable, which indicates the last
end time of a job. The assignment of start times is done such that the start of one job
corresponds to the end time of the terminate operation of the previously scheduled
job. In case the end time of the previously ended job corresponds to the start of an
activation block, then the start time of the next schedulable job is assigned to the end

4.5 Time-Triggered Schedule Synthesis

| 139

Algorithm 5: Schedule synthesis of LET Start jobs in TTS

1
2
3
4
5
6
7
8

9
10
11
12
13

14
15
16

17
18
19
20

21
22

23

24

Input:
U° — the sorted set of unique release times of all LET Start jobs,
A" —the set of all activation blocks reserved for scheduling of timer jobs,

J® — the set of (K,V) pair elements, where K is the release time and V is the set
of LET Start jobs released at time K
Output:
8% = {st3 |VJ2, VTP € 1¢,i € [L,n"],] € [L,n}]} start times of all LET Start jobs,

ES = {etiSIjW]iS,j,Vﬂs € 1g,i € [1,n"],j € [1,n}]} end times of all LET Start jobs

Function ScheduleStartJobs (U°,AY, J%):

Ist + min(U°)
foreach release time t € U° do

J? < J5[t] unique set of jobs released at time ¢
if Ist < t then

f

if da € A", where t = a} .start then
| Ist < aj.end

oreach job]l-s,]. €]ts do

stf]. — Ist

ptf i <+ CalculatePreemptionTime (A%, stisl i wcetis)
ety; < sty +wcet? + pt;

Ist < etisj + 004

if Ist > d; j — wcett — ov; then

Error: Infeasible schedule.
| return D0

if Ja¥ € A", where Ist € [a¥.start,a’.end) then
d < a}l.end — al .start
if a¥ starts with ov.s then
| d=d—ovg
al.start < Ist
at.end < a).start +d

return SE, EE

140 | Scheduling Design

time of the activation block. In the first iteration of time ¢, the start time of the first
selected job is assigned to the end time of the activation block containing .

The preemption delays of every job are calculated by the function CalculatePreemption-
Time in Line 11, which searches recursively for all activation blocks that overlap with
the time interval [stiS, i etf: j]' The time interval [stfl i etf].] is increased in each iteration
of the recursive function by the preemption time that is caused by activation blocks
found in previous iterations of recursion. The recursive function stops if no activation
blocks are found that overlap with the time interval [stf, ir etf]-] and returns the total
duration of the overlapping activation blocks. The end time of the job is then assigned
in Line 12 considering the calculated preemption delay. Because the recursive function
that calculates the preemption delay of a job is basic in nature, its definition is not
provided. Delays of the timer interrupt due to the suspend interrupt locks are handled
inside the recursive function as follows. The start times of timer interrupt instances,
that preempt a communication job, are shifted by a fixed time delay defined as 0v;¢s.
This means that if an activation block a;' preempts a job | iS,j' it can preempt the job
only at time a}.start + ov,,s. Therefore, the recursive function changes the start of a}/
to a} .start + ovy,s. If a shifted interval a; overlaps with another one, then the other
interval is also shifted. If the end time of a shifted interval corresponds to the end time
of the preempted job, then the interval is shifted further by an amount of 0v; time and
if the interval starts with a context-switch, then its duration is reduced by the amount
of context-switching time 0v.. The shifting and duration adjustment of overlapping
intervals occurs until no overlaps exists among them.

The schedule of LET Start jobs is defined as infeasible if at least one LET Start job
cannot be scheduled within the time interval defined by its release time and deadline.
The schedule is invalid if the start time of LET Start jobs is greater or equal to the end
time of their respective LET End jobs, because it results in insufficient capacity for
scheduling computation jobs. The rest of the algorithm inside the if check in Line 17
checks if the end of the terminate operation corresponds to the start or lays inside
an activation block. In this case, if the activation block starts with a context switch
operation, then its duration is reduced by the context-switching time ov.s because this
operation is already included at the terminate operation of the job.

4.5.1.2 Scheduling of LET End Jobs

Algorithm 6 synthesizes a non-preemptive schedule of LET End jobs. Their activation
offsets are generated such that their execution does not overlap with the execution
of any occurrence of the timer interrupt or with the execution of LET Start jobs. The
activation offset ofj of eachjob | ZE] of each task TF € 7 is bounded as

(a¥.end + wcet; + weet? + 2 x 0v;) < of

i < (dij — weett — ovy), 4.16)

4.5 Time-Triggered Schedule Synthesis | 141

where a represents the activation block in which jobs]Z.S]- and J; ; are released. The

start time stf]. and end time etfj of every job | ZE] are defined as
stfj = ay.end \ etl-k:j = stfj + wcetfE + ovy, (4.17)

where a}; is the activation block in which job]I-Ej is released. Algorithm 6 takes as input

the sorted set of unique absolute deadlines UF of all LET End jobs, the HP duration
hp*, the set of communication blocks cc* calculated after the schedule of the timer
and of LET Start jobs, and the set JE of (K,V) pair elements, where K is the absolute
deadline time and V is the set of LET End jobs with deadline equal to time K.

Algorithm 6 generates the schedule of LET End jobs as follows. For every absolute
deadline t in the set of unique absolute deadlines UF, generate sequentially the
schedule of all LET End jobs that have absolute deadline equal to t. The assignment of
start times and offsets of LET End jobs is backwards starting from the HP duration
because these jobs are scheduled such that their execution happens close to the end
of their LET intervals. The algorithm generates the end times first and later the start
times and activation offsets. The activation offset represents as well the release time
of the timer interrupt job released to activate the LET End job. In the first iteration of
time ¢, the end time of the first selected job is assigned to the HP duration hp*.

The assignment of end times is handled by the /st variable, which stores the activation
offset of the last scheduled job. End times are assigned such that the end of one job
corresponds to the activation offset of the previously scheduled job. If the activation
offset of the previously assigned job corresponds to the end of an activation block
(Line 8), then the end time of the next schedulable job is assigned to the start time
of the activation block. If the start time of a job equals the end of a communication
block (Line 21), then the activation of the job and the execution of the timer interrupt
takes place before the block starts. The while loop in Line 13 checks for communication
blocks that could overlap with the execution of a LET End job. If such a block is found,
then the schedule of this job is planned before the occurrence of the block. Although
this approach is not effective in terms of utilizing the HP interval, it can provide a
non-preemptive execution of LET End jobs. In harmonic task sets with LET duration
equal to the periods, such overlaps do not occur.

The schedule of LET End jobs is defined as infeasible if at least one LET End job cannot
be scheduled within the time interval defined by the release time of its corresponding
LET Start job and its absolute deadline. The schedule is invalid if the offsets of LET
End jobs are smaller or equal to the end time of their respective LET Start jobs. In such
a case, there is insufficient capacity for the execution of computation jobs. Validation
of the schedule feasibility of computation job is handled by the schedule synthesis
algorithm of computation tasks.

142 | Scheduling Design

Algorithm 6: Schedule synthesis of LET End jobs in TTS
Input:
UE — the sorted set of unique absolute deadline times of all LET End jobs,
cc* — the set of communication blocks,
JE — the set of (K,V) pair elements, where K is the absolute deadline and V is
the set of LET End jobs with deadline K, hp* — the HP duration in core C,
Output:
SE = {stfjW]fj, VTE € t¥,i € [1,n"],j € [1,n¥]} start times of all LET End jobs,
EF = {etfjW]fj,VTiE € 1¢,i € [1,n"],j € [1,n}]} end times of all LET End jobs,
OF = {otfjW]E VTE € ©¥,i € [1,n"],j € [1,n%]} offsets of all LET End jobs

i’

1
» Function ScheduleEndJobs (UE, cc*,]E, hpt):

3 Ist < hp*
4 foreach deadline time t € UE do
5 JE « JE[t] unique set of jobs that must finish latest at time ¢
6 if [st > t then
7 | Ist<t
8 if Jeclt € cct, where Ist € [cc) .start, cct.end] then
9 | Ist < cc).start
10 cJob + |JE|
11 foreach job]l-Ej € JF do
12 cJob < cJob —1
13 while (1) do
14 s « Ist — ovy — weett
15 if decl € cc¥, where cclf.start < s < cct.end then
16 | Ist < cc}.start
17 else
18 L break
19 etfj < Ist — ov;
E E E
21 if Ject € cc¥, where cclf.end = stf]- then
22 L otfj ccl.start — oy,
23 else
E E
24 L otl-,j — Sti,j — 00q — 004
25 if cJob < 0V Pect € cc*, where otf]- = cct.end then
E E
27 if otf]. < rl.sj + weet? + ov; then
28 Error: Infeasible schedule.
29 return O,0,0
30 Ist + otfj
31 | return SE EE OF

32

4.5 Time-Triggered Schedule Synthesis | 143
4.5.1.3 Optimization of PTP Overheads

As shown in Chapter 3, the high buffering run-time overheads of PTP occur due to
data stability of copy operations caused by the usage of spin-locks and the inter-core
communication delays caused by concurrent accesses on shared resources such as
bus and memory. TTS offers the possibility to reduce these overheads by enforcing a
sequential execution also for tasks running on different cores. Hence, the schedule
can be constructed such that execution overlaps of LET communication tasks running
on different cores are reduced or fully eliminated. Two straightforward approaches
are described to construct the TTS schedule such that PTP overheads are decreased.

In the first approach, the schedule of LET communication jobs running on different
cores is constructed such that none of these jobs execute in overlapping time intervals.
In this case, delays due to concurrent operations and due to spin-locks are eliminated.
However, this approach decreases heavily the schedulability and the efficient utiliza-
tion of core’s capacity, i.e., the idle time increases at the boundaries of LET intervals,
unless other non-LET tasks execute during this time. Sequential execution of copy
operation running on different cores is described as well in [82, 83].

In the second approach, the schedule of LET communication tasks is constructed such
that only concurrent LET Start and End jobs of different cores and concurrent LET End
jobs of different cores execute in non-overlapping time frames. In this case, parallel
execution of LET Start jobs of different cores do not cause data stability issues and,
hence, spin-locks are not required. However, the inter-core communication overheads
still occur. Compared to the first approach, the second one is expected to have better
schedulability and higher core utilization, but slightly more buffering overheads. In
both cases, finding a feasible schedule of LET tasks is less possible compared to when
none of these approaches is applied.

The step-wise TTS schedule synthesis, proposed in this work, enables realization of
both aforementioned approaches by combining the strategy and algorithms described
in Sections 4.4.2,4.5.1.1 and 4.5.1.2. In the first approach, the schedule of the timer inter-
rupts is constructed for each core separately and the schedule of communication jobs
is then performed step-wise, as described in Sections 4.5.1.1 and 4.5.1.2, but treating
all tasks as they all run in one core. In the second approach, the schedule is generated
as follows. In the first step, the schedule of the timer interrupt and of LET Start tasks
is generated for each core separately using the approaches described in Sections 4.4.2
and 4.5.1.1. In the second step, communication blocks of each individual core are
calculated, which are later merged to one set of communication blocks B¥. In this
case, the blocks in B¥ represent the time intervals occupied by occurrences of the timer
interrupt and LET Start tasks running on all cores. In the final step, the schedule of
LET End tasks of all cores is generated at once using the approach described in Sec-
tion 4.5.1.2 and the set of communication blocks B”. The schedule construction of LET
End tasks is done treating them as they run all in one core. This approach ensures that
LET End tasks of any core run not only sequential among themselves, independent

144 | Scheduling Design

on which core they run, but as well in relation to any LET Start task. The described
schedule syntheses are applicable only for homogeneous processors.

4.5.2 Scheduling of Computation Tasks

The schedule synthesis algorithm of computation tasks generates start and resume
times of all computation jobs such that they all meet their absolute deadlines under
consideration of preemption delays caused by the execution of the timer interrupt and
of communication jobs. The schedule of the timer interrupt and of communication
jobs is encapsulated within communication blocks, which are treated during schedule
synthesis as fixed non-schedulable time intervals that can delay or interrupt the
execution of computation jobs. The schedule of computation tasks is constructed
via the CP approach. Therefore, the rest of this section describes all variables and
constraints proposed to construct their schedule via CP.

Definition 4.5 (Scheduling Parameters): Let st; ; and et; ; be the start and end times of
job Ji j of the computation task T; € Tz, respectively. Their values are bounded as

stij € lest;j, le;j — wcet; — ovi] Net;; € lest; i + wcet; + ovy, le;], (4.18)

where est; ; defines the earliest start time of |; ; and le; j the latest end time of |; ;, and ovy
is the termination overhead associated with completion of J; ;.

The value of est; ; is defined by the end time of the communication block cc} in which job
Jij is released, where r € IN. If no such communication block ccy exists, then est; ; equals
the release time r; j. The boundaries of est; j are defines as

estj = cc, .end<=3cc, — 1;; € [cc, .start, cc;.end). (4.19)

The value of le; j is defined by the start time of the communication block ccy',, which
contains the absolute deadline d; ; of job [; ;, where r +s € IN. If no such block ccy
exists, then le; ; equals the deadline d; ;. The boundaries of le; ; are defines as

le;; = ccyyg.start Nd;; € [ccy g.start, ccyy s.end). (4.20)

The scheduling parameters of every computation job J;; of every task T; € 1, are
depicted in Figure 4.9. Every job J; ; can be scheduled at any time during the interval
[esti/]-, lel-,j] as long as the end time et; ; is less or equal to the latest end time le; ;. The
end times of computation jobs are calculated during schedule synthesis to ensure
that their complete WCET is scheduled within their LET intervals. Furthermore, the
generation of end times during the assignment of start times, avoids the need to use

expensive and insufficient schedulability tests, which are typically based on definition

4.5 Time-Triggered Schedule Synthesis | 145

u u u
cCy CC r+1 CC g
S s L weet ? 5
| : : :
g : pti; ;
J’J T L T T >
rij estiy St etyj lej; d; Time

Figure 4.9: TTS scheduling parameters of job J;; of computation task T; € .

of WCRT. Preemption delays caused by communication blocks and other computation
jobs are included in the calculation of end times.

The following terminology is used in the remaining sections. For each job J;; of
T; € 1, atw;; denotes the active time interval defined by [ri,d; ;] and etw; ; denotes
the execution time interval defined by [st; ;, et; ;|. The active and execution time intervals

of each communication block cc € C,, corresponds to the interval [ccl .start, cck.end).

4.5.2.1 Schedule Generation

Computation jobs are allowed to be preempted more than once during their execution
as long as they finish their execution within their LET intervals. They can be pre-
empted either by other computation jobs or by communication blocks. A preemption
time point of a computation job corresponds to the start time of another job or the
beginning of a communication block, and a resume time point corresponds to the
end of the preempting job or the end of a communication block. The resume times
are constructed based on the end times of preempting jobs and after the schedule is
generated. Preemptions of computation jobs are allowed in a way that the execution
of preempting jobs or preempting communication blocks is completed within the
execution time interval of the preempted jobs. The preemption delay of each job J; ; of
each task T; € 17, notated by the variable pt; ;, is calculated during schedule synthesis
and is considered in the calculation of job’s end time et ;.

Several variables are defined to enforce an execution order between computation jobs
and to calculate preemption delays. The preemption variables are defined to track if
computation jobs are preempted by other computation jobs or by communication
blocks. In this way, if preemptions occur, then preemption delays are calculated ac-
cordingly. The non-overlapping variables are created to track the overlapping situation
of execution time intervals of computation jobs when a preemption relation does not
exists. Hence, if two jobs do not preempt each-other, then their active time intervals do
not overlap. The direct left neighbor variables are defined to handle context-switching
overheads at the start of computation jobs.

The described variables are created for each unique pair of computation jobs that
have an overlap of their active time intervals and for each unique pair of computation

146 | Scheduling Design

job and communication block with overlapping active time intervals. Otherwise, if
two jobs have no overlapping of their active time intervals, then the aforementioned
variables are not created because these jobs cannot influence each-other’s execution.
Similarly, a communication block cannot preempt a job if its execution does not overlap
with the active time interval of the job.

Definition 4.6 (Preemption Variables): For each unique pair of jobs J; ; and]y, ; with over-
lapping active time intervals and J; ; # i, let ipi."].l indicate the Boolean variable that

defines if job J; ; is preempted by job [y, and 1P;<]l the Boolean variable that defines if job
Jk,1 is preempted by job J; ;. The values of these variables are defined as

ipl.(’.l _ 1, if Jx preempts]i,j 4.21)
& 0, otherwise ’

l.pi,]’ _ 1, i Jij preempts Ji, 422)
kel 0, otherwise . '

For each unique pair of job J; j and communication block cc} with overlapping active time
intervals, let ip;,]- indicate the Boolean variable that defines if job J; ; is preempted by the
communication block ccy. The values of ip} jare defined as

ip! = 1, ifccy p?’eempts]i,j ' (4.23)
] 0, otherwise

Communication blocks are non-schedulable entities and are not allowed to be preempted

by computation jobs. Therefore, the preemption relation of ccy by J; ; is not defined.

Constraint 4.1 (Preemption Constraints): For each computation job J; ; of each task T; €
T¢p, the execution order and preemption relations of J; j with other computation jobs and
communication blocks that have overlapping active time intervals with J; j, are defined as

VT, € ’L'Cup, V]k,l,ipf’jl = 1¢>Sti,j < sty Netg) < €ti,]‘, (4.24)
Veey € Cu, ipj; = 1=>st;; < cc start A ccy.end < et;. (4.25)

The constraints defined in Constraint 4.1 enforce that if a computation job J; ; of a task
T; € 1, is preempted by another computation job or a communication block, then
their execution time interval must be included in the interval [st; j, et; ;] of J; ;.

Definition 4.7 (Non-overlapping Variables): For each unique pair of jobs [;; and Ji
with overlapping active time intervals and [; ; # Ji, let novi.(’].l be the Boolean variable

4.5 Time-Triggered Schedule Synthesis | 147

that defines if jobs do not have an overlap of their execution time intervals. The values of
nov?’j[are defined as

(4.26)

ookl — 1, if Jx; and J; j do not overlap '
M 0, otherwise

An overlap of the execution time intervals of jobs J; j and | | implies a preemption relation
between jobs.

For each unique pair of job [;; and communication block ccy with overlapping active
time intervals, let nov; j be the Boolean variable that defines the non-overlapping relation

between job]; j and communication block cci/. The values of nov; jare defined as

noo; . =

i,j

. {1, if ccy! and J; j do not overlap . (4.27)

0, otherwise

Constraint 4.2 (Non-overlapping Constraints): For each unique pair of computation jobs
Ji,j and Ji; with overlapping active time intervals and J; j # Ji, if jobs J; j and Ji; do not
overlap, then their execution must not overlap, defined as

novi."jl = l<=etwy, Netw;j = O, (4.28)
For each unique pair of computation job J; ; and communication block ccy with overlapping
active time intervals, if job J; j and communication block ccy do not overlap, then the
execution time interval etw ; of J; i and the time interval [cc} .start, ccyl.end) of ccy must
not overlap, defined as

nov; ; = l<=[ccy start, cc;.end] Netw; j = ©. (4.29)

In TTS, the execution of concurrently active jobs does not have to be strictly sequential
as in FPS. This means that after a running job terminates at time ¢, it is not mandatory
that another ready computation job starts its execution at time ¢. The schedule is also
correct when the start time of a job takes place after a considerable amount of time
has elapsed after the termination of another job. In between these times the idle task
can execute. This offers the opportunity to utilize the HP interval in a more balanced
way, rather than causing peak loads close to the activation times of jobs. Therefore, the
overlapping between jobs can be minimized and, hence, the preemption overheads
are reduced. The proposed synthesis algorithm does not enforce restrictions on start
times of jobs, besides that they must start and finish their execution within their LET
intervals. Constraint 4.3 defines the calculation of the end time of computation jobs.

148 | Scheduling Design

Constraint 4.3 (End Time and Preemption Delay): The end time et;; of each job J;; of
each task T; € 1), is defined as

et;;j = st;j + wcet; + pt; j + 00t + hcs; j * 00s, (4.30)

where pt; j represents the preemption delay, calculated as

_ . Kl
ptij=), (dfxipj)+) ((hes*ove +weety +o0v) +ipj), (431)
VeckeCy Vi1 VT €T

and hcs; ; defines if]; j needs a context-switch before its start time.

As shown in Equation (4.30), the run-time of the terminate operation 0v; is included
in the calculation of the end time of each computation job. In case a computation
job starts its execution directly after termination of another computation job or of a
communication block, then the context-switching takes place within the terminate
operation. Otherwise, if a job starts some time later or if it preempts another job,
including the idle job, then a special handling is needed to include the context-switching
operation before the start of the job’s execution. For this reason, a dedicated variable
is defined for each computation job to track during schedule synthesis if a job starts
the execution at the end time of another job or of a communication block. Hence, for
each job J;; of each task T; € 1, the Boolean variable hes; j, referred as has-context-
switch, defines if job J; needs a context switch before the start of its execution, which
takes the value “1” only if the job doesn’t start directly at the end time of another
job or of a communication block. As shown in Equation (4.31), the has-context-switch
variable not only enforces a time distance of 0v.s between jobs, but also provides the
possibility to include the context switch overhead 0v.s in the preemption delays of
each computation job. To calculate the value of hcs; j, the direct left neighbor variables
and constraints are defined in Definition 4.8 and Constraint 4.4.

Definition 4.8 (Neighbor Variables): For each unique pair of jobs J; j and]y ; with over-
lapping active time intervals and J; ; # i1, let idlnf”} indicate the Boolean variable that

defines if job Ji is the direct left neighbor of J; ; and idln;{”jl the Boolean variable that
defines if job J; ; is the direct left neighbor of]y ;. The values of these variables are defined
as
idln;(’.l _ 1, i Jx is'direct left neighbor of J; ; ’ 432)
g 0, otherwise

idln;(’,jl _ {1, if] j is direct left neighbor of Ji, . 433)

0, otherwise

4.5 Time-Triggered Schedule Synthesis | 149

Jobs i j and [y, cannot be direct left neighbors of each-other at the same time. This is
constrained as

1, either J;or]y is direct left neighbor

idlnly! + idlny) = { (4.34)

0, mneither J; ; nor Ji is direct left neighbor .

For each unique pair of job [; ; and communication block ccy with overlapping active time
intervals, let idln] j indicate the Boolean variable that defines if communication block cc}f
is the direct left neighbor of job J; . The values of idIn; jare defined as

(4.35)

it = | 1 fcer s direct left neighbor of i;
K 0, otherwise :

Because the communication block cc cannot be rescheduled and the context-switching

run-time is included in the time duration d}, a variable icllni’j to describe the opposite of
idln} j 18 not needed.

Constraint 4.4 (Neighbor Constraints): For each unique pair of jobs J;j and Ji; with
overlapping active time intervals and J; ; # i1, if job Ji is a direct left neighbor of J; ;
then the start time st; ; of |; ; equals the end time ety of |, otherwise these times must be
different. This constraint is defined as

1, st;; =et

car k1 ’ , k1

idn}; = 0 ” . (4.36)
, Stl,] 75 etk,l

For each unique pair of job [; ; and communication block ccy with overlapping active time
intervals, if communication block ccy is a direct left neighbor of J; j, then the start time
stij of]i,j equals the end time ccy/.end of ccy, otherwise these times must be different. This
constraint is defined as

il — 1, cci.end = st 437)
"0, cctend # sty '

A computation job does not necessarily have a direct left neighbor. At most one
computation job or communication block is a direct left neighbor of a computation job.
A computation job has a context-switch before the start only if it doesn’t have a direct
left neighbor. Therefore, the value of hcs; ; of each computation jobs J; ; of each task
T; € 17, is assigned to zero if the sum of all job’s direct left neighbor variables is one.
Otherwise, the job needs a context-switch before it starts executing. The Boolean type
of hes; j enforces that at most one direct left neighbor can exist for J; ;. The value of
hes; j is calculated based on the sum of direct left neighbors variables of J; ; as shown
in Constraint 4.5.

150 | Scheduling Design

Constraint 4.5 (Context-Switch Constraints): For each computation jobs J; ; of each task

T; € T, the value of hes; ; is calculated considering direct left neighbor variables of J; ; as
. k1 .
hesij= Y idln;; + Y. idln; ;. (4.38)
V]k,l,TkETg’lp VeeteCy

The relation of preemption, non-overlapping, and direct left neighbor variables is given
in Constraint 4.6.

Constraint 4.6 (Exclusive Disjunction Constraints): For each unique pair of computa-
tion jobs J;;j and], with overlapping active time intervals and [;; # Jy,, if job Ji,
preempts job J; ;, then the opposite is not allowed. If jobs do not preempt each-other, then
they must either not overlap or a direct left neighbor relation must exist among them.
These constraints are defined as

il + ipy) + ool +idinl! + idin, = 1. (4.39)

For each unique pair of computation job J; ; and communication block ccy with overlapping
active time intervals, if cc' preempts job J; ;, then their execution overlaps. Otherwise, ccy
is a direct left neighbor of job [; ;. This constraint is defined as

ip;j + novj ; + idln; ; = 1. (4.40)

Figure 4.10 shows an example of a computation schedule generated by the described
approach. This example is only one of several possible solutions that the proposed
schedule synthesis can provide. As the figure shows, job J;; is preempted by all
other jobs and by the communication block cc}’_ ;. Job Ji; requires a context-switch
operation at its start time because it doesn’t have a direct left neighbor and it must
handle the context change between the preempted job J; ; and the preempting job J ;.
Similarly, job], 4 requires a context-switch operation because it preempts job J;; and
has no direct left neighbor as well. Because job Jj, starts the execution directly after
job Ji; terminates, it doesn’t need a context-switch operation at its start time. The
same applies for job J; ;, which starts directly after cc. This is possible because the
context-switch is included in the duration of cc;’ and in the termination operation of
the job Ji;. The context change from the termination of Jj, and resume of J;; is as
well included in the termination operation of Jj, . A hierarchical preemption of job
Jij by jobs Ji; and], 4 is allowed by the synthesis algorithm. Although hierarchical
preemptions can increase the stack memory size, they are unavoidable for certain
applications and are necessary to ensure a feasible schedule.

Terminate and context-switching operations must occur atomically, i.e., not preempted
by any job. To allow preemption only during the actual execution time of jobs, for
each job J; ; of each task T; € Tg‘p the actual start time acst; ; and the actual end time

4.5 Time-Triggered Schedule Synthesis | 151

u u u
cC CC y+1 CC 5
T A
J, [T] .
Loy C
Sti,] ‘ : s Ptri | etlJ
N — A
Jii 4 f - - >
: L Sty OV ety
: : & : :
A L direct left A
neighbor of H
Do ;] S
o Slpq €lyq L
s 5 - ’ >
v >
Styf ety s Time

Figure 4.10: Example of TTS synthesis considering preemption overheads. Job J; ; has as direct
left neighbor the communication block ccy. Jobs Ji; and], ; do not have direct left neighbors
and they require a context-switch operation before their start times. Job Jj, s has Ji; as direct
left neighbor and it does not require a context-switch at its start time. Job J; ; is preempted
by all the other jobs and by communication block ccy, ;. The dark green boxes indicate the
execution of jobs. The light green and gray boxes indicate the preemption and start delays,
respectively.

152 | Scheduling Design

-

>

Invalid Preemption Invalid Preemption

2 _

T
riJ StiJ ClSl‘l')j aet,-,j et,-J di,j Tlme

Figure 4.11: Invalid preemption points for computation jobs. The dark green and gray box
indicate the execution time and the start delay of job J; ;, respectively.

acet; ; are defined to determine non-preemptive regions in etw; ;, defined as

acst; ; = stij + 0Vecs, hcsi’j =1 (4.41)
v stij, otherwise ’ '
acet;; = etj;j — 0v;. (4.42)

These regions are intervals [st; ;, ast; ;] and [aet; ;, et; ;]. Their abstraction is shown
in Figure 4.11. To enforce valid preemption points, the disable preemption constraints
are defined in Constraint 4.7, which are redundant to the ones given in Constraint 4.1.

Constraint 4.7 (Disable Preemption): For each computation jobs J;; of each task T; € T,
the position of preemption by other computation jobs and communication blocks that have
an overlap of their active time interval with the one of |; j is defined as

VT € 'L'Cup, V1 Zpi(']l = 1<:>61C5t1'/]' < sty Nety; < acet;j, (4.43)
Veey € Cu,ipj; = 1<=>acst;j < cc; .start A\ ccy.end < aet; . (4.44)

4.5.2.2 Schedule Optimization

In this work, the preemption costs are optimized by minimizing the function f}(3),
defined in Equation (4.45), which instructs the solver to produce solutions with
minimal number of preemptions.

fe= Y (X i+ X i (4.45)

V]i/]',VT,' ETC”p V]k,j,VTkGTg[p Veep eCy

This optimization applies only to preemptions of computation tasks. The num-
ber of preemptions for communication tasks is reduced by scheduling them non-
preemptively when possible and with higher urgency than computation tasks. If the
solver is not configured to optimize the schedule by means of function f/*(3), then it
provides all feasible solutions that satisfy the constraints described in this section.

4.6 Fixed-Priority Schedule Synthesis | 153

%& deadline
Jii l y Jk
T ’ > T, ’ >
k dk,l k dk’]
A A
Jij g
I t—1 |l | > i+ r 1T T >
0 5 divj t [ms] 0 5 d,',‘,' t [ms]
(a) Job Ji; scheduled before J; ;. (b) Job J; j scheduled before Ji

Figure 4.12: Scheduling of LET End tasks with equal priorities. The dark green and gray boxes
indicate the execution time and the start delay of jobs, respectively.

4.6 Fixed-Priority Schedule Synthesis

The FPS scheduling is designed to efficiently handle dynamic behavior of a system
at run-time. In FPS, scheduling decisions are taken online based on static priorities of
tasks. The OS maintains a ready queue to store all active jobs. The FPS scheduler selects
from the queue jobs of higher-priority tasks before the low-priority ones. The arrival
of a high-priority task causes a call to the scheduler, which interrupts the execution of
a running low-priority job and loads for execution the arrived higher-priority task. If
the ready queue is empty, then the idle job is loaded for execution.

In FPS, priorities define the execution flow of tasks. Therefore, they must be defined
such that all high- and low-priority tasks finish their execution before their deadlines,
i.e., within their LET intervals and data exchanges occur according to LET semantics.
To ensure that LET semantics are fulfilled at design and target execution phase, the
execution flow of tasks must be deterministic, i.e., predictable and reproducible. Be-
cause scheduling decisions in FPS are taken online, for certain priority configurations
the execution flow of tasks defined at design can result different to the one occurring
on target. If multiple tasks share the same priority, then the FPS scheduler selects
for execution any of their coinciding active jobs. The determinism problem arises
when jobs are released at the same time instant but have different absolute deadlines.
Although in certain OS implementations the First In - First Out (FIFO) mechanism
is used by the scheduler to select from the ready queue first active jobs of the same
priority, in case jobs share the same release time the FIFO mechanism is not enough to
provide a predictable FPS schedule.

An example of two tasks sharing equal priorities is shown in Figure 4.12. Jobs J; ; and
Jk are released at the same time, but have different absolute deadlines. In this case,
only one job for each task and only relative deadlines are shown in Figure 4.12. If the
scheduler selects first job Ji; for execution, then the deadlines are fulfilled by both
jobs J; ; and Ji ;, as shown in Figure 4.12a. Otherwise, as shown in Figure 4.12b, if the
scheduler selects job J; ; first for execution, then job J;; misses the deadline. In case
tasks have different priorities and task Tj has higher priority than T;, then the execution

154 | Scheduling Design

order between jobs J; j and Ji is identical at design and target execution time, which
results in the same execution order as in Figure 4.12a. To avoid this situation and to
ensure task execution flow determinism, the proposed priority synthesis approach
assigns unique priorities to all LET tasks.

The schedule generation problem for FPS refers to the assignment of priorities to LET
tasks, such that timing, communication, and performance requirements are fulfilled. In
this work, task priorities are assigned and their schedule is validated under con-
sideration of the timer interrupt and preemption overheads. The ordering between
communication and computation tasks is guaranteed, as constrained by LET seman-
tics, by defining priorities of LET Start tasks higher than of LET End tasks, and the
priorities of computation tasks lower than of LET Start and End tasks. Furthermore,
to reduce preemption delays of LET communication jobs caused by other non-LET
high-priority tasks, their execution is defined as non-preemptive.

The priority ranges of LET tasks are defined for each core C;, € C considering the
number of computation tasks n* € IN, as shown in Definition 4.9. The number of
tasks in PTP and SBP is 3 * n" and n* + 1, respectively.

Definition 4.9 (FPS Priorities of LET Tasks): Let 77, ¥, and m; denote the priorities of
the LET Start T? € t¥, LET End TF € ¥, and computation task T; € Tep, respectively.
Their values are bounded as

P € {3xn",.,2%n" +1}, (4.46)
nf e {2xn",., n" 41}, (4.47)
m; € {n",., 1}, (4.48)

where the value 3 x n* defines the highest priority and 1 the lowest.

The B3, BE, and B; define the preemptability of TS, TF, and T;, respectively. Values of B?
and BE are assigned to “non” to define a non-preemptive execution of LET Start T? and
LET End TF tasks. Values of B; are assigned to “full” to define that jobs of computation
task T; are preempted at any time during their execution.

To improve the performance, the schedule of LET tasks is constructed and verified
in two different steps. The schedule synthesis algorithm described in Section 4.6.1
generates the schedule of communication tasks for PTP. This algorithm is also used
in SBP to construct the schedule of IR™, which is treated during synthesis as a LET
Start task with the highest priority. A generic mathematical formulation is described
in Section 4.6.2 as a CSP problem to generate the schedule of computation tasks. An
approach to validate the schedulability of computation tasks during the synthesis
of priorities is proposed. This approach replaces formal schedulability tests, which
are complex, have high solving time, and are applicable under strict assumptions.

4.6 Fixed-Priority Schedule Synthesis | 155

This algorithm generates the schedule of computation tasks when PTP, SBP, or a
combination of both protocols is used in the same application.

4.6.1 Scheduling of Communication Tasks

Priorities of LET Start and End tasks are assigned using the DM heuristic. In DM,
tasks with the earliest deadline get the highest priority. LET Start jobs with coinciding
release and execution must execute, independent of their priority order, all before
the start of their respective computation jobs. The order of execution of LET End
jobs is essential and jobs with the earliest deadlines must execute first. Activation
offsets of LET End jobs are assigned during priority assignment such that these jobs
are not released at the same time or in coinciding execution time intervals and they
complete their execution within their deadlines. Therefore, DM heuristic and the
priority ranges defined in Definition 4.9 are a sufficient approach to assign priorities
of LET communication tasks while satisfying the deadlines and the Requirement 4.1.

The methodology of assigning priorities and validating the schedule of LET commu-
nication tasks is described by three main steps.

St 1 Priorities of LET Start and End tasks are assigned using the DM heuristic and
the priority ranges defined in Definition 4.9.

St 2 Asin TTS, activation blocks are calculated to isolate the execution of the timer
jobs that occur for activating LET Start and computation tasks. They are used
during construction of the schedule trace, i.e., execution of LET Start jobs accord-
ing to the assigned priorities, such that start and preemption delays caused by
the timer’s execution are added during the assignment of start and end times
of all LET Start jobs released within one HP interval. After the schedule trace
of LET Start jobs is constructed and validated, their execution and activation is
enclosed in communication blocks, which are used during schedule generation
of LET End jobs. Their purpose is to not only validate the schedule of LET End
jobs, but to also calculate possible time intervals in which those jobs can activate,
execute, and simultaneously fulfill their deadlines.

St 3 Activation offsets of LET End jobs are generated in a way that these jobs are
never preempted or delayed by the occurrence of any timer job or by other
communication jobs. The schedule trace is constructed and validated considering
the assigned priorities and offsets.

Because the execution order of LET Start jobs is straightforward when DM is applied,
the generation of the execution trace of these jobs is not described in this section.

The generation of the schedule trace and activation offsets of LET End jobs is given
in Algorithm 7. Scheduling attributes of LET End tasks shown in Section 4.5.1 are also

156 | Scheduling Design

the attributes solved by Algorithm 7. Hence, the stf i etf], and 01?E define the start time,
the end time, and the activation offset of the LET End job J: 1E] respectlvely Although
the release of a job does not occur exactly at the time of its activation offset, for
simplicity the activation offset of i of each job J; E] is defined equal to its release time rE].
The start and end times of LET End jobs are calculated during their offset assignment
to ensure that these jobs execute close to the end of their LET intervals considering
the priority ordering defined by DM and after the timer interrupt occurrences that are

released to activate these job have completed execution.

Algorithm 7 takes as input the sorted set of unique absolute deadlines of all LET
End jobs UE, the HP duration hp" of core Cy, the set of communication blocks cc*
calculated after the schedule of the timer and of LET Start jobs, and the set | Eof
(K,V) pair elements, where K is the absolute deadline time and V is the set of LET
End jobs with deadline equal to time K. Algorithm 7 assigns activation offsets of
LET End jobs as follows. A queue of active jobs JF stores the set of unscheduled LET
End jobs that have absolute deadlines less or equal to a time Ist. The jobs in J£ are
ordered by ascending priorities and the queue is updated in several positions within
the algorithm. The assignment of activation offsets is handled by the Ist variable,
which stores the activation offset of the last scheduled job. End times are assigned
such that the end of one job corresponds to the activation offset of the previously
scheduled job of a lower priority. If the activation offset of the previously assigned
job corresponds to the end of a communication block, then the end time of the next
schedulable job is assigned to the start time of the communication block. In the first
step, Ist is assigned to the HP duration ip" and the set of active jobs is filled with the
set of first jobs that have absolute deadlines less or equal to ip“. Jobs of the queue J£
are scheduled within the while loop in Line 6, which executes as long as there is at
least one job to be scheduled. The algorithm selects the job with the lowest priority to
schedule from the queue (in Line 7), and after the job is scheduled, it is removed from
JE (in Line 27).

Before the job is scheduled, the Ist is checked if it overlaps with any communication
block (in Line 8) and if such a block is found then its start time, stored in variable nlst,
is used as a starting point to schedule the next job. Hence, if such block is found then
the nlst # Ist. In this case, the job is not scheduled but the queue JF is updated with
all possible jobs that have an absolute deadline in the interval [nlst, Ist] and the Ist is
updated with nlst. The scheduling of the jobs takes place in the next iteration of the
loop because the newly added jobs in JF could have lower priority than the selected
job | ZE Note that the priorities of tasks are assigned using DM based on the relative
deadline of the task and not on the absolute deadline of the job. The planning of a
job Ji E. is scheduled from Line 14 to Line 26. If the start time stE] corresponds to the
end of a communication block cc}, then the execution of the timer interrupt is planed
before the start of cc}’. Otherwise, its execution is planned between otE and the stE .

The if condition in Line 16 does not consider in the otE] assignment the context sw1tch
operation at the beginning of the timer interrupt because if other jobs are scheduled at
this time, then the context-switching is handled in the o0v; operation. This operation is

4.6 Fixed-Priority Schedule Synthesis

Algorithm 7: Part 1. Schedule synthesis of LET End jobs in FPS

Input:

UE — the sorted set of unique absolute deadline times of all LET End jobs,
cc" — the set of communication blocks, hp" — the HP duration in core C,,
JE — the set of (K,V) pair elements, where K is the absolute deadline and V is

| 157

the set of LET End jobs with deadline K.
Output:

SE — {stfj\V]f].,VTiE € 1¢,i € [1,n"],j € [1,n¥]} start times of all LET End jobs,
EF = {etfjW]E VTE € ©¥,i € [1,n"],j € [1,n%]} end times of all LET End jobs,

i’

OF = {otE.|VJE,VTE € t,i € [1,n"],j € [1,n¥]} offsets of all LET End jobs

/]

i,j

Function ScheduleEndJobs (UF, cc¥, hp*, JF):

2
3 Ist < hp
4 JE<{} // The set of priority-ordered active jobs
5 | Ist + UpdateActiveJdobs(UE,JE, JE, Ist)
6 | while(|Jf| > 0)do
7 J5 < Ji (0]
8 nlst < NonoverlappingLst(}iEj, cct, Ist)
9 if Ist # nlst then
10 foreach deadline t € UE, where nist < t < Ist do
1 | &+ TR UTEH
12 | Ist < nlst
13 else
14 etfj — Ist — ovy
E E E
16 if dec} € cc”, where cc)f.end = stfj then
17 t otf; « ccil.start — ov,
18 else
E E
20 foreach deadline t € UE, where otf]- <t< stf]. do
2 | JE TR UTE[E]
2 if AJF, € Jr with di; > otfj V Bect € cct with cct.end = otfj then
E E
2 if otiEj < rf]. + weet? 4 weet; + 2 % 0v; + 2 % 00, then
// Error: Infeasible schedule
25 return ©,0,0
26 Ist + otfj
o || L e
28 if |[JF| = 0 Alst > 0 then
29 L Ist + UpdateActiveJobs(UF, JF, JE, Ist)
30 | return SE EE OF

31

158 | Scheduling Design

Algorithm 8: Part 2. Schedule synthesis of LET End jobs in FPS

1 Function UpdateActiveJobs (UE,]E, f, Ist):
foreach deadline t € UE do
if t < Ist then

LJEFIEU]EU]

g & W N

return ¢

NS

Function NonoverlappingLst (]iEj/ cct, Ist):
8 nlst < Ist
9 while (1) do

10 s < nlst — ov; — wcetf-E

1 if decl € cc”, where cc).start < s < ccl.end then
12 | nlst cc} start

13 else

14 L break

15 return nlst

16

included in the calculation of otfj in Line 22 to handle the switch between the idle job

and the timer interrupt, only if the queue JE does not contain an unscheduled job with
absolute deadline greater or equal to the otfj or if it does not exist a communication

block that overlaps with otfj. Before this operation takes place, the queue is updated

in Line 20 with jobs that have deadlines in the interval [stfj,

updated in Line 28 with the next first jobs with deadline less or equal to Ist. If the
queue is empty, then the algorithm terminates.

otfj]. The queue JE is also

Sequential execution of communication tasks executed on different cores to reduce
communication overheads cannot be guaranteed by FPS because each core has its
own FPS scheduler that takes scheduling decisions independently of the schedulers
on the other cores. In FPS, to avoid parallel execution of LET communication tasks
of different cores, their activation offsets must be defined such that they are active
and finish their execution in non-overlapping time intervals. However, in case of
unpredictable activation jitters, FPS cannot guarantee non-overlapping execution
of these tasks. Therefore, to avoid unpredictable data consistency situations, it is
commonly recommended to use locking mechanisms in case of FPS.

4.6.2 Scheduling of Computation Tasks

The FPS schedule synthesis of computation tasks is constructed via constraint pro-
gramming approach. The proposed algorithm generates priorities of these tasks such

4.6 Fixed-Priority Schedule Synthesis | 159

that they meet their deadlines under consideration of start and preemption delays.
Unique priorities are assigned to computation tasks of each core C;, € C by using the
all different constraint as

alldif ferent({7;|VT; € 12, }). (4.49)

A priority assignment is valid if the schedule derived by these priorities and the FPS
semantics is feasible. The feasibility of the schedule is validated during constraints
solving time using the following approach, which is relevant for PTP, SBP, and a
combination of both protocols. Hence, the FPS schedule is constructed and validated
during priority assignment, i.e., in the constraint solver, by calculating the start and
finish time of every job released in the HP interval considering start and preemptions
delays caused by high-priority tasks, terminate operation of low-priority tasks, and
communication blocks. The final set of unique communication blocks is constructed
after the schedule of communication blocks is generated. These blocks are treated
during synthesis of computation jobs as scheduled intervals of high-priority that can
delay or interrupt the execution of computation jobs.

Synthesizing the execution of jobs during constraint solving is highly challenging
because, contrary to TTS, in FPS jobs must follow the fixed execution order that is
defined by the assigned priorities and semantics of FPS. Therefore, different variables
and constraints are defined and described throughout this section. To track the
execution of jobs released in the HP interval, variables such as the activation time, the
start time, and the end time of each job are defined. By calculating the end times of
computation jobs during priority assignment, the usage of expensive schedulability
tests and insufficient classical response time analysis such as calculation of WCRT are
avoided. In the proposed approach, the actual response time of each job is calculated
as the time between the release and end time of the job. The formalization described
in this section is published in [15].

Definition 4.10 (Scheduling Parameters): Let st; ; and et; ; be the start and end times of
job J; ; of task T;, respectively. Their values are bounded as

sti; € [est;, le;; — wcet; — ovy] Net;; € [est;; + wcet; + ovy, le;j], (4.50)

where est; ; defines the earliest start time of J; ;, le; ; defines the latest end time of J; ;, and
0v; is the termination overhead associated with the completion of job J; ;.

The value of est; ; is defined by the end time of the communication block cc; in which the
job J; j is released. If no such communication block cc;' exists, then est; j equals the release
time r; ;. The boundaries of est; j are defines as

est;; = cc, .end<=>Jcc; € C, — 1 € [ccy start, ccy.end)]. (4.51)

160 | Scheduling Design

u u u
cC) CC j+] CC g
. weet;
Jij L std; plij 'oov 5 -
~ T T T Ll
vij est,;j Sf,'J Clet,’,j etiJ le,-,j dl' Time

Figure 4.13: Fixed-priority schedule verification parameters of job J;; of computation task
T;. The time difference between the release time r;; and the start time st; ; defines the start

delay std; ;, depicted by the gray box. The time duration of communication block cc}, ; defines

the preemption delay pt; ;, marked by the light green box. The dark green box indicates the
execution of J; ;. Reprinted from [15].

The value of le; j is defined by the start time of the communication block ccy’, ; in which the
respective LET End job]lE] of Ji j is contained. Note that the absolute deadline d; ; of job
Ji,j is either contained in ccy, s or occurs some time later. This depends on the schedule
synthesis of the communication jobs. If no such communication block ccy', ; exists, then
le; j equals the deadline d; ;. The boundaries of le; j are defines as

lejj = ccy g.start. (4.52)

The earliest start and latest end times are fixed static values and are only used to
define the boundaries of start and end time variables. While the release time 7; ;
of every job J;; is fixed, the start st;; and end time et;; vary and depend on the
execution of communication blocks and other computation jobs. The start time st; ;
is necessary to track the actual start of the job considering start delays caused by the
occurrence of communication blocks, by the execution of higher-priority jobs, and
by the execution of the terminate operation of low-priority jobs. Start delays coming
from the timer interrupt and high-priority communication jobs are encapsulated in
the communication blocks and are included in the calculation of start delays in the
same way as for computation jobs. The end time et; ; defines the time that job J; ; of
task T; terminates under the assigned priority 7;. It is defined to validate if job J; ;
finishes its execution before its absolute deadline and is calculated considering the
start time st; ; and the preemption delay pt; ;. The start time st; ; and end time et; ; of
every job J; ; are calculated in Constraint 4.8.

Constraint 4.8 (Start and End times): The actual start time st; ; of each computation job
Jij of each task T; € TC”p is defined as

Stz',j =Tij + Stdi,]', (4-53)
where the variable std; j defines the start delay of [; ;. The end time of J; ; is defined as

et,',]' = Sti,]' + wcet; + ovy + Pti,]', (4.54)

4.6 Fixed-Priority Schedule Synthesis | 161

where pt; ; is the preemption delay, ov is the run-time of the terminate operation, and
wcet; is the WCET of task T;. The aet; ; specifies the start time of the terminate operation

of Jij-

The scheduling attributes of each job J; ; of every task T; are depicted in Figure 4.13.
Each job J; ; can be scheduled at any time during the interval [est; ;, le; ;| as long as the
end time et; ; is less or equal to the latest end time le; ;. In FPS, start delays must be
explicitly calculated for all computation jobs because the execution order between
active jobs must follow the FPS semantics, which define that if a job is active at a given
time then it is executed as soon as it has the highest priority among active jobs.

The terminate operation run-time ov; is included in the calculation of the end time of
each job. Because the terminate operation includes the context-switching operation,
the time distance between a terminating job and the next starting job does not require
a special handling. In FPS, different to TTS, the tracking of left neighborhood relations
between computation jobs is not required to track the context-switch operation at the
start of a job, because the execution of jobs is strictly sequential, as defined by priori-
ties, and computation jobs start either after the termination of another computation
job or after the end of a communication block, which corresponds to the end of a
communication job or the timer interrupt. In the former case, the context-switching
operation is integrated in the duration of the communication block. In FPS, after the
termination of a job the next active job with the highest priority starts executing. If the
schedule queue has no active jobs, then the idle job resumes its execution. Therefore,
no special handling is required for the context-switching at the start of a job.

Terminate operations must occur atomically, i.e., non-preemptively. Therefore, pre-
emption of low-priority jobs by high-priority ones is not allowed during the execution
of terminate operations. In this case, the high-priority jobs are delayed until the
low-priority jobs finish their execution. However, because communication blocks are
treated during schedule synthesis of computation tasks as non-schedulable entities,
preemption of the terminate operation of computation jobs is allowed by such blocks
to simplify the formalization. In a real situation, all jobs that execute within the com-
munication block must be delayed until the terminate operation finishes. But, enabling
the preemption of such operations in the formalization gives the possibility to find
a feasible schedule, if one exists, which is not be possible if constrained otherwise.
This is an effect of the proposed step-wise approach of constructing the schedule of
communication and computation jobs separately.

If the algorithm provides a solution with a preemption of the terminate operation, then
the following actions can be taken. If the preempting communication blocks contain
only occurrences of the timer interrupt, then the communication blocks, and hence,
the execution of timer interrupt occurrences is shifted to the end of 0v; operation in a
post-processing step. In this case, the utilization of the HP interval is unaffected and
the execution order of other jobs does not change. This case is typically applied for SBP.
An example of such shift is shown in Figure 4.14. If the communication block contains

162 | Scheduling Design

u u
. cc, : . cc’,
: : Shift of cc”,
Jij | weet; I ov; Jij | weet; ' ov;
[IS e s e e e e e L L L L IO
0 5 10 t[ms] 0 5 10 t[ms]

Figure 4.14: Shifting the execution of a communication block cc} after terminate operation of a
job J; ; finishes the execution. The dark green and light green boxes indicate the execution time
and the preemption delay of job J; ;, respectively.

jobs of LET Start and End tasks, then the delay caused by the terminate operation must
be planned in their schedule construction and the schedule is regenerated. This means
planning the execution of LET Start jobs with a delay of ov; and shifting activation
offsets of LET End jobs by an amount of 0v; to the left. The delay ov; for LET Start jobs
is planned only if they are contained in the preempting communication block. The
same applies for LET End jobs. If the regeneration of the schedule returns a feasible
schedule with the same priority ordering but without the preemption of the terminate
operation, then the assignment is valid. This case is applied for PTP.

In FPS, the start of each communication block corresponds to the start of the context-
switch operation that takes place before the occurrence of the timer interrupt, which
is released to activate one or more LET tasks. If the proposed synthesis algorithm
provides a priority ordering solution, in which the end time of a computation job
equals the start time of a communication block, then this solution is considered valid
and does not mean an over-utilization of the HP interval with context-switching
overheads. This is because during and at the end of a terminate operation, there is
no knowledge about which and when the next jobs are released. However, when the
terminate operation is preempted by a communication block, which is, e.g., shifted at
post-processing step, the context-switch operation is considered twice, at the terminate
operation and at the start of the communication block. In this case, the second context-
switch operation is not required. Because the preemption of the terminate operation by
a communication block is expected to occur occasionally, allowing the context-switch
operation twice is an implicit assumption of this approach.

The following terminology is used in the remaining sections. For each job J;; of
T; € 1, atw;; denotes the active time interval defined by [r; ;,d; ;], etw; ; denotes the
execution time interval defined by [st; ;, et; ;], and rtw; ; denotes the response time interval
defined by [r; ;, et; ;]. The active time interval of each communication block cc} € Cy

corresponds to the interval [cc¥.start, cct.end).

4.6 Fixed-Priority Schedule Synthesis | 163

4.6.2.1 Start and Preemption Delays

Several variables are defined to ensure the FPS semantics and to calculate start and
preemption delays caused by the execution of computation tasks and communication
blocks. The delay and preemption variables are defined to track if computation jobs are
delayed or preempted by other computation jobs or by communication blocks. In this
way, if delays or preemptions occur, then start and preemption delays are calculated
accordingly. A computation job is allowed to be preempted by other computation
jobs only during its computation time. The terminate operation is not allowed to be
preempted by these jobs, but only by communication blocks. A computation job is
delayed either by communication blocks, by high-priority computation jobs, or by the
terminate operation of low-priority jobs. The non-overlapping variables are defined
to track the overlapping situation of active time intervals of computation jobs when
a preemption or delay relation does not exists. Hence, if two jobs do not delay or
preempt each-other, then their active time intervals do not overlap. The right-neighbor
variables are defined to ensure FPS semantics in case of start delay situations.

The described types of variables are defined for each unique pair of computation jobs
and for each unique pair of computation job and communication block that have an
overlap of their activate time intervals. They are defined as follows.

Definition 4.11 (Delay Variables): For each unique pair of jobs |; j and Ji; with overlap-
ping active time intervals and [; ; # Ji, let idi.‘,’jl indicate the Boolean variable that defines

if job J; ; is delayed by job i and zd;{]l the Boolean variable that defines if job Ji | is delayed
by job J; ;. The values of these variables are defined as

1, if Ji, delays J
idf! :{ if Jiy delays Jij (4.55)

0, otherwise

- 1. T . del

id = { o Jij delays Jur. (4.56)
’ 0, otherwise

Let idhpf”].l be the Boolean variable that indicates if Ji delays [; ; because Ty has higher

priority than T; (rt; < m3) and idnpf’jl define the Boolean variable that indicates if Ji
delays J; ; during the non-preemptive terminate operation when Ty has lower priority than

T; (rt; > m13). Variables idhp;;’jl and idnp;;’jl describe the opposite relation between J; j and

Ji 1. The values of delay variables idi.‘/’]-l and zd;]l are as
S RETIN 3 BT ¥
zdi’j = zdhpi,j + zdnpi’]., (4.57)

id), = idhpy!, + idnpy), (4.58)

164 | Scheduling Design

For each unique pair of job J; ; and communication block cc; with overlapping active
time intervals, let zd” indicate the Boolean variable that defines if job J; ; is delayed by
communication block cc“ The values of id; ; are defined as

L {1, if ccy delays J; j . (4.59)

0, otherwise

Communication blocks are non-schedulable entities and are not delayed by computation
jobs. Therefore, the opposite delay relation between J; j and ccy is not defined.

Constraint 4.9 (Delay Constraints): For each computation job J; ; of each task T;, the prior-
ity ordering and start delay relations of J; ; with other computation jobs and communication
blocks that have overlapping active time intervals with J; ;, are defined by the constraints
given in Equations (4.60) to (4.62).

VT, V]k,l,idhpi-i’jl = 1<:>(7Ti < 7Tk) A (7’1’,]' < etk,l) A (etk,l < Si’i/]') (4.60)

VT, wk,l,z'dnpﬁ.‘;]? = 1= (m; > m) A (et < 1ij < etyy) A ety <sti;) (4.61)

Vee, € Cy, id;j = 1<=(r;; < cci’.end) A (cc;.end < st; ;) (4.62)

The constraint in Equation (4.60) implies that a job Ji, delays job J;; when zdhpk t=1
only if task Ty has higher priority than T;. In this case, the delayed job J; ; is released at
any time during the active time interval of the delaying job Ji ; or before the release
of Ji.;- The delay situation occurs only if job J; ; starts after job Ji; ends the execution.
Therefore, the end time of Ji; and the start time of J; ; are constrained as et < st; ;.

The constraint in Equation (4.61) implies that if a job Ji; delays job J;; during the
terminate operation, then task Ty must have lower priority than T; and the release
time of job J; ; must lay in the time interval [aety , efy,], which defines the execution
time interval of the terminate operation. In this case, the delay situation occurs only if
job J; ; starts after job Ji; ends the execution. The constraint in Equation (4.62) implies
that a communication block cc; delays job J; ; only if it occurs before job J; ; starts the
execution and after it is released.

An example of the delay relation between two jobs Ji; and J; ; is shown in Figure 4.15.
The delay of J; ; by job Ji; when the priority of Ty is higher than T; is shown in Fig-
ure 4.15a. In this case, the release time of J; ; is not constrained and can take place at
any time in the time interval [ry j, ety] or at any time before the release time ry ;. In the
former case, job J; j is delayed by Ji; only if it has not started execution until 7 ; point
of time. Figure 4.15b shows the case when J; ; is delayed by Ji; during the terminate
overhead operation. This case happens only if the release time of J; j occurs during
[aety, ety ;] time interval, otherwise if r; ; occurs during [sfy), aet], then J; ; preempts
Jk; because T; has higher priority than Tj.

4.6 Fixed-Priority Schedule Synthesis

| 165

Jk1

Yer Stii aety ety Vi Stk aetk,, eth
L Lidhpi =1 L idhp=0
A A Cidnp, ' =0 idnp. ' =1
21 I 2
Tij St;; et;; rij St et;;

(a) Delay due to high priority m; > ;.

(b) Delay due to low priority 7y < ;.

Figure 4.15: Delay of job’s execution due to priority ordering and non-preemptive section of
the terminate operation. The gray boxes show the start delay intervals and the dark green

boxes the execution of jobs.

Definition 4.12 (Preemption Variables): For each unique pair of jobs J; ; and J; with

overlapping active time intervals and J; j # Ji 1, let ipi.(’jl indicate the Boolean variable that

defines if job]; j is preempted by job [y ; and lp;(]l the Boolean variable that defines if job
Jk,1 is preempted by job |; ;. The values of these variables are defined as

ip’.".l _ 1, if Ji1 preempts J; ; (4.63)
L 0, otherwise '

ipi = |1 I Tijpreempts) (4.64)
ki1 0, otherwise . |

For each unique pair of job J; ; and communication block ccy with overlapping active time
intervals, let ip; i indicate the Boolean variable that defines if job |; ; is preempted by the
communication block cc;. The values of ip} jare defined as

(4.65)

ipl = 1, ifccy preempts J; '
4 0, otherwise

Let ipc;; define the Boolean variable that indicates if job ; j is preempted by the commu-
nication block cc} during computation time and i ptlr-/]- the Boolean variable that indicates
if job J; j is preempted by ccy during terminate overhead operation. The value of ip; is
defined based on variables ipclf,j and iptlflj by the constraint

ipf,]- = ipcf/]- + iptzj. (4.66)

Communication blocks are non-schedulable entities and are not preempted by computation
jobs. Therefore, the opposite preemption relation between J; j and ccy' is not specified.

166 | Scheduling Design

Constraint 4.10 (Preemption Constraints): For each computation job J; ; of each task T; €
Tep, the priority ordering and preemption relations of J; ; with other computation jobs and
communication blocks that have overlapping active time intervals with J; ;, are defined by
the constraints in Equations (4.67) to (4.70).

VT, V]k,l,l'pi.{,’; =l=m<mA (Sti,]' < Tk < aeti,j) A (Sti,]' < Stk,l) VAN (etk,l < aeti,j)

(4.67)

Veey € Cu,ipei; = 1<=>st;j < ccy.start \ccy.end < aet; (4.68)
Vee) € Cu,iptf’j = l<=aet;; < cc, .start A ccy.end < et; (4.69)
aetij =etj;—ovy—) (df xipt])) (4.70)

VeckteCy

The constraint in Equation (4.67) implies that a job J;; preempts job J; ; only if task
Ty has higher priority than T;. Furthermore, the preemption of job J;; by another
computation job Ji; is allowed only if Ji is released and started after the start time of
Jij and only if] ; ends the execution before or at the start time aet; ; of the terminate
operation of J; ;. If the release time r;; and the end time ety ; equals aet; j, then in the
postprocessing step of the computation schedule, i.e., during generation of the BTF, job
Jk,i does not preempt J; ;, but J; ; terminates before the start of J; and the terminate
operation of J; ; executes after the terminate operation of Ji ;.

The constraint in Equation (4.68) implies that a block cc; preempts job J;; during
the computation time only if the execution interval of cc} lays within the interval
[st; j, aet;;] of job J; ;. Similarly, the constraint in Equation (4.69) implies that a commu-
nication block cc preempts job J; ; during the terminate operation only if the execution
interval of cc lays within the interval [aet; ;, et; ;] of job J; ;. The distinction between
variables ipc; ; and ipt; ; is required to calculate the start time aet; ; of the terminate
operation of job J; ;. Hence, the constraint in Equation (4.70) defines the value of aet; ;,
which can be any value between st; ; and et; ;, but considering the terminate overhead
ov; and preemption delays that occur during the terminate operation.

An example of the preemption relation between two jobs Ji; and J; ; and job Ji; and
communication block cc} is shown in Figure 4.16a. The preemption of job Ji; by job
Jij occurs because job J; ; is released during [sty , aety ;] and the priority ordering is
7t; > 7Tk Similarly, the communication block cc}’ preempts Ji; because ccy occurs in
the time interval [sfy ;, aety ;]. Figure 4.16b shows the preemption of a job Ji; by the
communication block cc;’ during the terminate operation. This preemption occurs
because the execution time interval of cc!! lays in the interval [aety j, ety]. As shown
earlier, job J; ; cannot preempt job J; during the terminate operation despite of the
priority ordering 7t; > ;. Therefore, job J; ; is delayed by J ;.

Definition 4.13 (Non-overlapping Variables): For each unique pair of jobs J; j and Ji
with overlapping active time intervals and [; ; # Ji, let novi.(’].l be the Boolean variable

4.6 Fixed-Priority Schedule Synthesis | 167

cc, "

(a) Preemption at computation time. (b) Preemption at terminate operation.

Figure 4.16: Preemption of job’s execution and of terminate operation. The gray boxes show
the start delay intervals and the dark green boxes the execution of jobs. The light green boxes
show the preemption time of jobs.

that indicates if jobs do not have an overlap of their response time intervals. The values of

k,1 .
nov;’; are defined as

ook — {1, if Jx1 and J; j do not overlap . @71)

0, otherwise

An overlap of the response time intervals of jobs J; j and]y implies a delay or a preemption
relation between jobs.

For each unique pair of job J; ; and communication block ccy with overlapping active
time intervals, let nov; j be the Boolean variable that defines the non-overlapping relation

between job J; ; and communication block ccy. The values of nov; jare defined as

. {1, if ccy! and J; j do not overlap . (4.72)

0, otherwise

An example of jobs that have an overlapping of their active time intervals, but not
an overlap in their response time intervals, is when for instance a job Jj is released
during the active time interval of a job J; ; and after J; ; has finished its execution. In
this case, the constraint solving has to ensure that these jobs do not have either start
delay or preemption relation, but instead they have a non-overlapping relation.

Constraint 4.11 (Non-overlapping Constraints): For each unique pair of computation
jobs J; j and [y ; with overlapping active time intervals and J; j # Ji 1, if jobs] j and Ji; do
not overlap, then their response time intervals must not overlap, defined as

nov;.(”jl = l<=rtwy, Nriw;; = . (4.73)

168 | Scheduling Design

For each unique pair of computation job J; ; and communication block ccy with overlapping
active time intervals, if a job J; j and a communication block ccy do not overlap, then the
response time interval rtw; ; of |; j and the time interval of ccy! must not overlap, defined as

novj; = 1<=cc}' start, ccf .end] N rtw; j = @. (4.74)

Constraint 4.12 (Exclusive Disjunction Constraints): For each unique pair of computa-
tion jobs J; ; and Ji; with overlapping active time intervals and J;; # i1, if job Ji,
preempts job J; ;, then the opposite is not allowed. If jobs do not preempt and do not delay
each-other, then they must not overlap. These constraints are defined as

TIPS S S kil _
py; lp;(,]l + zdi,]. + zd;’]l +novy; = 1. (4.75)

For each unique pair of computation job J; ; and communication block ccy with overlapping
active time intervals, if ccy preempts or delays job J; ;, then they cannot overlap. This
constraint is defined as

ip;j+id;; +nov; ; = 1. (4.76)

The delay, preemption, and non-overlapping variables and constraints do not only
define the execution order of jobs, but are as well used to calculate the start and
preemption delays. Hence, the start delay std; ; of every job J; ; of each computation
task T; € rg*p is defined by the maximal time distance between the release time of J; ;
and the end time of all computation jobs that delay job J; ; and the end time of all com-
munication blocks that delay job J; ;. The value of std; ; is defined in Constraint 4.13.

Constraint 4.13 (Start Delay): The start delay std; ; of each job [; ; of each computation task
T; is defined as
std; ; = max(max(A;;), max(B;;)), 4.77)

where A; j and B; ; define the set of time distances as
Ajj = {idf,}'l * (etxy —1ij) Vi1, YTk € Top} (4.78)

B;j = {id; ; x (ccy .end —r;;)[Veey € Cu}. 4.79)

Only computation jobs and communication blocks that have an overlap of their active time
intervals with J; ; are considered in the calculation of std, ;.

The preemption delay pt;; of each job J;; is defined by the sum of WCETs of all
computation jobs that preempt J; ; and the total duration of all communication blocks
that preempt job J; ;. The value of pt; ; is defined in Constraint 4.14.

4.6 Fixed-Priority Schedule Synthesis | 169

Constraint 4.14 (Preemption Delay): The preemption delay pt;; of each job J;; of each
computation task T; € 1¢,, is defined as

ptij= Y (d}« ipl;) + Y (weety + ovy) * ipi.‘”jl, (4.80)

VeeyteCy V]k,l/TkeTcup

where d}f indicates the duration of the communication block cc}. Only computation jobs
and communication blocks that have an overlap of their active time intervals with |; ; are
considered in the calculation of pt; ;.

The preemption and start delay variables and constraints are insufficient to guarantee
FPS semantics during delay situations. Figure 4.17a shows an example schedule that
does not fulfill FPS semantics, although the variables described above are assigned
correctly and constraints are fulfilled. In this example, the solver assigns value “1”
to delay variables id}, 7 zdf}l, zdf}z, zd;l] Nz zd’;l Zf, and zdpjz In terms of constraints, the
start delay of Jj ; is assigned to the maximum end time of its delaying entities ccy,
CCyyq, €t o, Jijr Jk1, and Jp g, which corresponds to the end time of], 4. The schedule
is invalid because the time interval between et; ; and ccy, ,.start, marked by the red
pattern-filled box, is not utilized by any job although an active job exists, which in
this case is job Jj, . A correct schedule of this example is when job], ; does not delay
job Jp,r and Jj, r runs between et; j and ccy,.start. If J, r does not finish the execution
before the start of ccy, ,, then it is preempted by cc, , and potentially by J, 4 if the
preemption occurs during the computation time of] n,f- Therefore, the semantics of
FPS are fulfilled only if the start delay time interval of each job is fully utilized by the
execution of its delaying computation jobs and communication blocks. The correct
schedule of Figure 4.17a is shown in Figure 4.17b. To avoid such invalid schedules,
the neighbor variables and constraints are defined as follows.

Definition 4.14 (Neighbor Variables): For each unique pair of jobs J; ; and Ji ; with over-
lapping active time intervals and J; ; # Ji, let zdrn indicate the Boolean variable that

defines if job | is the direct right neighbor of J; ; and zdrn] the Boolean variable that
defines if job J; ; is the direct right neighbor of Ji ;. The values of these variables are defined

as
zdrnl 1, if Jx; is direct right neighbor of]” (481)

2 0, otherwise
idrn;'{’jl _ 1, if]i is'direct right neighbor of Ji . 4.82)

’ 0, otherwise

For each unique pair of job J; j and communication block cc; with overlapping active time
intervals, let idrn] i indicate the Boolean variable that defines if communication block cc}!

is the direct right neighbor of job J; j and idrny "/ the Boolean variable that defines if job J;

170 | Scheduling Design

u u u
CC, CCpyg CC 42
— A idy =1
A P id, = 1
. i idijkl= 1
I e
¥ij et idy =1
. idy =1
Frg otoob ety A idy, /=1
P i id, =1
g Do
4 i |l
Iy , ' -
7, %,,f €l‘h,f
| — I I —
Time

(a) Start delay of job Jj, greater than the execution times of delaying jobs.

u u u
CCy cC 4 CC 12 oy
— o A i =1
A P idf =1
o L id, /=1
Ji [l .
i etij P id, =1
| idth=1
: Lo Lo .
LT ety 1 i/ =0
J | L I id,f'=0
paio i
A ha i €lng
s 7788
Lo Ty elyy
| — I I —>
Time

(b) Neighbor variables and correct execution order and distance among jobs.

Figure 4.17: An FPS schedule considering start and preemption delays. Priorities are 7t >
7; > 711, > 1y,. The gray boxes show the start delay intervals and the dark green boxes the
execution of jobs. The light green boxes show the preemption time of jobs. The red highlighted

boxes indicate the underutilized time interval.

4.6 Fixed-Priority Schedule Synthesis | 171

is the direct right neighbor of ccy. The values of these variables are defined as

1, ifccy is direct right neighb i

; drnlf,j _ if cc} z? irect right neighbor of J; ; , (4.83)
0, otherwise

; drni’j _ 1, if]i is.direct right neighbor of cc} ' (4.80)
0, otherwise

Although the communication block cc} cannot be rescheduled, the variable idrnl is
required to track if, e.g., a job |; ; starts directly after the end time of ccy.

Constraint 4.15 (Neighbor Constraints 1): For each unique pair of computation jobs J; ;
and Ji; with overlapping active time intervals and [; ; # i1, if J; ; is direct right neighbor
of Jk,1, then the opposite is not allowed. If a preemption relation exists between |; j and Jy),
then they cannot have direct right neighborhood relation. These constraints are defined as

idrnf + idrn) <1, (4.85)

ipi.‘"].l + ip;’/]l =1— idrnf”; + idrn;c’,]l =0. (4.86)

If job Jy; is a direct right neighbor of J; j then the end time et; ; of]; j equals the start time
ety of Jx 1, otherwise these times must be different. These constraints are defined as

1, et;; = st
{ €hij = Sk (4.87)

idrn®! = .
0, eti,]- 75 Stk,l

ij

For each unique pair of computation job J; ; and communication block ccy with overlapping
active time intervals, if communication block ccy is a direct right neighbor of J; ;, then
the opposite is not allowed. If cc preempts J; j, then cc; and J; ; cannot be direct right
neighbors of each other. These constraints are defined as

idrny! + idrn]; < 1, (4.88)

ipf,j =1— idrnf/]- + idrni’j =0. (4.89)

If communication block ccy is a direct right neighbor of |; ;, then the end time et;; of
Jij equals the start time ccy .start of ccy, otherwise these times must be different. This
constraint is defined as

1, cci.start =et;;

idrn} ; = . (4.90)
g 0, ccy.start # et

172 | Scheduling Design

If Ji j is a direct right neighbor of communication block ccy, then the end time cc)/.end of
ccy' equals the start time st; ; of J; ;, otherwise these times must be different. This constraint
is defined as

1, cct.end = st

idrnt = . (4.91)
0, ccy.end # st;;

Constraint 4.16 (Neighbor Constraints 2): For each computation job J; ; of each task T; €
Tep, let hdrn; j define the Boolean variable that defines if J; j has a direct right neighbor.
The value of hdrn; ; is defined as

okl .
hdrnjj =) idrn;; + Y. idrnj ;. (4.92)

V]k,l,VTkG’l'cup Yeey eCy
The Boolean type of hdrn; ; enforces that at most one direct right neighbor can exist for J; ;.

For each communication block cc}, let hdrny define the Boolean variable that denotes if
ccy has a direct right neighbor. The hdrn} variable implies that either one or zero direct
right neighbors exists for cc}. The value of hdrn} is defined as

hdm = Y idrmf. (4.93)
V]k,I,VTkETC”p '

The Boolean type of hdrn} enforces that at most one direct right neighbor can exist for ccy.

Constraint 4.17 (Delay Constraints for FPS Semantics): For each computation job J; ;
of each task T; € T, the delaying computation jobs and communication blocks of J; j must
fulfill the following constraints

. gkl -kl 1)
VIt YTk € Ty idy; = 1= (hdrmy + Y (ipgg*id] +id5)) > 1, (494

cp’
Vpg VTpETY

Veey € Cy idf; = 1= (hdrnf +) (ip}q* idfj}q widi ;) > 1. (495

VIpa N TpETl,

In Constraint 4.17, if a job J; ; is delayed by other computation jobs and communication
blocks, then the time interval between r;; and st; ; is fully utilized by the delaying
entities, i.e., all the delaying entities are running during this time frame. An entity is
either a computation job or a communication block. The constraint in Equation (4.94)
implies that each job Ji; that delays job J; ; must either have a direct right neighbor or
must preempt at least one of the jobs that delays J; ;. The equation is greater or equal
to “1” because if job Ji; has no direct right neighbor then it can preempt one or more
jobs that delay job J; ;. Additionally, J; can have a direct right neighbor and preempt
one or more jobs that delay job J; ;. The constraint in Equation (4.94) implies that each

4.6 Fixed-Priority Schedule Synthesis

| 173

u o, u u
CC < \ CC y+] ¢~ CC 459
— direct right — } — }
N neighbor H H I H H |
A | \ \
f f T
{ | ¥
sy 7/ | []
| P b ‘ ‘ —
Fij | Sty | i Ptij el
| [///‘U_L‘[right . ! direct right |
. neighbor . T I
: ' : neighbor ' . .
:) : 21 : : direct right
Jk,l : } . /l‘uiglllwr
H H H | H |
Tk St ety - | : |
H H H | H |
o r |
: T
: |
S @ [|
: [— pt {
: Tng Slpg : o o €lpg
s P
: : - ~
Iny : | |
H H |
: V}',’f S'th'f eth’f direct right
: : A neighbor
Jeg | §
P Teg! Sleg €leg
H H ' ' -
| | | | | . i
! Time
(a) Priorities are 7ty > 715, > 71 > 7T; > 7T
u o, u u
ce e } CCri1 ¢~ CC r+s
— direct right — } —
N neighbor H H I H H
A | |
, ¥ ot 5 :
| \ I \ \ -——
gy i R
‘ T ; ; J !
Tij } Sty LoDty : et;; |
. H H | 1 H
: jrect right : : : [
: | i et right : rdirect right : I
H neighbor . . .
.] ! 1 neighbor i : |
: ——1 : | : : ‘
Jkl } direct right
' | neighbor
LTkl Sty el o P |
: : A) : : ‘
5 I, : : \
. |
Sy @ B |
z — |
Tna Slhg ply Cla |
: : : A : !
5 i 5 -q T
Jhs : ! !
: : : direct right
. r,h'f , Sth‘f eth‘f neighbor
s z e |
Jus g ;]
Teg! Sleg €leg
! ‘ . .
| | | | | | . 4
Time

(b) Priorities are 7 > 71, > 71; > 71, > Te.

Figure 4.18: Example of start and preemption delays caused by higher-priority tasks and by
communication blocks of the PTP protocol. The gray boxes show the start delay intervals and
the dark green boxes the execution of jobs. The light green boxes show the preemption time of
jobs.

174 | Scheduling Design

communication block cc; that delays job J; j must either have a direct right neighbor
or must preempt at least one of the jobs that delay J; ;.

An example schedule of five jobs synthesized by the proposed approach is shown
in Figure 4.18a. In this example, the priority ordering is defined as 7ty > 7, > 71, >
7t; > 7. and job J; ; has the longest preemption delay because T; has the lowest priority
among tasks. Figure 4.18b shows the same example depicted in Figure 4.18a but with
priority ordering defined as 7ty > 71, > 71; > 713 > 77, In this case, the new priority
ordering changes the execution order of jobs and their respective start and preemption
delays. The preemption delay of J; ; is reduced but the start delays of jobs J ¢ and J, ¢
are increased. Job J, ¢ gets the longest start delay because T, has the lowest priority
among tasks. The start delay std, ¢ of job J ¢ is defined by the maximal end time of
its delaying entities, which in this case corresponds to the end time of Jj, ;. Similarly,
the std, ; is defined by the maximal end time of the delaying entities of Jj, r, which
corresponds to the end time of J; ;. The direct right neighbor relations are shown by
the dotted bidirectional blue lines only for the entities that have a direct right neighbor.
In Figure 4.18a, the communication block ccy, ; has job Jj, r as direct right neighbor.
After the change of the priorities in Figure 4.18b, the communication block ccy, ; does
not have a direct right neighbor because at the end time of cc)/, ; job], ; resumes the
execution. However, the constraints are still valid because ccy, ; preempts at least one
job, which in this case is job], 4.

4.6.2.2 Optimizations

The preemption costs are optimized by minimizing the function f}*(3), defined in Equa-
tion (4.96), which instructs the solver to produce solutions with minimal number of

preemptions.
.kl .
fFe= Y (Y i+ Y i) (4.96)
VIij Vi€t Vi NTETW) YeckeC,

This optimization applies only to preemptions of computation tasks. The number
of preemptions for communication tasks is minimized by scheduling them non-
preemptively when possible and with higher priority than computation tasks. If
the solver is not configured to optimize the schedule by means of function f*(3), then
it provides all feasible solutions that satisfy the constraints described in this section.

4,7 Evaluation

This evaluation focuses on the following aspects.

1) The scheduling success rate of TTS and FPS approaches is observed for applica-
tions that apply PTP and SBP protocols. The scheduling success rate defines the

4.7 Evaluation | 175

ability of TTS and FPS synthesis algorithms to find a feasible schedule. Because
PTP and SBP protocols have different demands in terms of processor resources,
the success rate of TTS and FPS differs for each protocol and depends also on
how each scheduling algorithm schedules tasks. Hence, this evaluation observes
at which degree are TTS and FPS applicable for each buffering protocol.

2) The impact of application extensions with new functionalities on scheduling
feasibility considering buffering demands of SBP and PTP is observed. The
extensibility is expressed by the increase of the computation load of tasks. Hence,
the scheduling success rate of both scheduling mechanisms considering the
buffering run-time impact of PTP and SBP is evaluated.

3) Preemptions caused by timer’s execution and scheduling semantics are evalu-
ated and reduced for each scheduling strategy and each buffering protocol. PTP
and SBP lead to different activation and context-switching overheads.

4) The run-time performance of each schedule synthesis algorithm is evaluated.

This evaluation uses a selection of metrics calculated in TA.Inspection option of
TA Tool Suite [85] of Vector Informatik GmbH. The simulation of the application
considering the produced schedule is not required because the proposed scheduling
synthesis algorithms generate the execution trace of the application and exports
it in the BTF format [161], which is imported in TA Tool Suite to evaluate timing
requirements and calculate several metrics. The schedule synthesis algorithms are
implemented in the CP-SAT solver of Google OR-Tools [162]. This evaluation is
performed on a machine equipped with 64 GB RAM and Intel(R) Xeon(R) W-2133
CPU 3.60 GHz with 6 cores.

4.7.1 Configurations

This case study is based on synthetically generated application models with charac-
teristics of the synthetic Engine Management System (EMS)s described in Section 3.5.
The feasibility and performance of the proposed scheduling synthesis algorithms are
influenced by task attributes such as load, periods, and the number of tasks. Chassis
applications are not used in this evaluation because their task attributes are nearly a
subset of the EMS applications. The buffering evaluation results of Section 3.5.1.2 are
used in this case study to benchmark the buffering load of PTP and SBP.

The schedule synthesis is performed for tasks of each core separately. The EMS tasks,
given in Table 3.2, can be mapped to different cores during software integration phase
and it is assumed that any valid task-to-core mapping exists for these tasks. Therefore,
the synthetically generated models of this evaluation are created to contain a unique
subset or the complete set of EMS periods shown in Table 3.2. Each model contains
unique periods with the assumption that tasks with equal periods are allocated on
different cores as a mechanism to execute parts of the application in parallel. If two or

176 | Scheduling Design

Configuration (V model) Load Ranges (%)
Communication 05—-14
ISRt 0.0002 — 0.006
Initialization of indexes 0.001 -1

Table 4.3: Configuration of the buffering load.

more tasks of equal periods are mapped to the same core, e.g., with period 5 ms, then
they are merged into one to reduce the activation and context-switching overheads. In
this way, the effect of unique task periods on scheduling is observed.

Models are generated considering the following characteristics. The impact of the
computation load on scheduling capabilities of each scheduling strategy is observed
by generating model sets with computation load between 30 % — 100 %. Each model
set contains 50 models. In total, 1,200 models are generated. Models of different
model sets have equal amount of tasks, equal total buffering load, and the same task
characteristic such as the period, offset, and LET duration. For example, Model-1 of
the ModelSet-30 and Model-1 of the ModelSet-40 have equal total buffering load, equal
number of tasks, periods, offsets, and LET duration. But their total computation load
is different. Hence, each model of ModelSet-30 has the total computation load 30 %
and each model of ModelSet-40 has computation load 40 %. The buffering load varies
among models of the same model set. For each model of each model set, the buffering
load and the load of the timer come in addition to the computation load. The load of
the timer depends on the amount of jobs released in the HP interval.

The ranges of the buffering load for both SBP and PTP are based on the experimental
results of Section 3.5.1. Note that the buffering load results of the Section 3.5.1 show
the buffering load of six cores. In this evaluation, an approximation of the total
buffering load for tasks mapped to one core only is considered. In PTP, the buffering
load represents the execution load of communication tasks. In SBP, the buffering load
represents the execution load of ISR™, executed on each core at the beginning of the
HP, and the execution load of initialization operations of buffer indexes at the start of
computation tasks. In SBP, the maximal buffer load includes as well the load when the
local programming style is used. In this evaluation, the load of ISR represents the one
of all cores because during the execution of ISR™ on one core the synchronization
between other cores is assumed to take place.

In this evaluation, the buffering load is configured as in Table 4.3. The load ranges
represent the buffer load for models with data accesses between 500 — 15,000. The
buffer load for models with data accesses higher than 15,000 are not considered for
the following reasons. Firstly, a buffering load of PTP greater than 15 % per core is
considered an inefficient use of processor’s capacity. Therefore, applying PTP for
this complexity of applications is unrealistic and impractical. For this reason, the

4.7 Evaluation | 177

Overheads Values (ps)
Activation 0o, 40
Termination ov; 30
Context-Switch 0vg 20
Resource 00y, 5

Table 4.4: Run-times for overheads.

evaluation of scheduling performance is focused on applications with PTP buffering
load up to 15 %. Secondly, the in-vehicle applications found in practice can apply LET
semantics only for a limited amount of data. Therefore, the range of data accesses
taken in this study assumes the typical use case of LET.

This evaluation focuses on two benchmarks. Benchmark 1 evaluates models with
synchronous tasks that have LET duration equal to their period. In this case, task
offsets are equal to 0. Benchmark 2 evaluates models with asynchronous tasks that have
LET duration smaller than their period. This benchmark is designed to observe the
effect that the offset and LET duration have in the overall schedulability of TTS and
FPS when SBP and PTP are used. Models of Benchmark 2 are generated considering
the constraint in Equation (3.8), which ensures that the generated models have the
termination of LET intervals of all jobs within the HP interval. This constraint is
essential for the correct buffering behavior of SBP. In Benchmark 2, the offsets and
LET duration of tasks are generated such that a dataflow exists between their LET
intervals. Hence, the offset of a task corresponds to the LET end of the first LET
interval occurrence of another task. The first task in the dataflow chain has an offset
Oms and the rest of tasks have an offset greater than 0 ms but less than or equal to
50 % of their period. The LET duration is any random value between 50 % — 90 % of
the period that fulfills the condition in Equation (3.8).

The WCETs of computation and communication tasks of both benchmarks are gener-
ated such that the following condition is fulfilled

V(TZ-S, TiE) eth, T € Tj‘p = wcetiS + wcetfE + wceet; + 3 x 0v, + 3 x 0v; < let;, (4.97)
where wcetis, wcetf, and wcet; are the respective WCETs of tasks Tis, TiE, and T;. The
value 3 * 0v, represents the execution time of the timer interrupt released to activate
tasks TZ-S , TZ-E, and T;, and value 3 * 0v; represents the termination overhead for these
tasks. The condition in Equation (4.97) does not guarantee that a feasible schedule

exists for these models. However, if it is not fulfilled, then the schedule is likely
infeasible and the effects of scheduling and buffering cannot be properly observed.

The schedule is generated for all models considering the activation, termination,
context-switching, and resource usage overheads shown in Table 4.4. These overheads

178 | Scheduling Design

are an approximation of the ones observed in an industrial real-time OS. Note that they
are generally implementation and platform dependent and can vary among processors
and different OSs. Although in TTS less context-switching overheads is expected than
in FPS, i.e., due to the execution of the scheduler, this evaluation considers equal
context-switching time in both TTS and FPS. This assumption is taken because the
considered automotive AUTOSAR OSs does not have an implementation of TTS and
the overheads for TTS could not be estimated for this evaluation.

The schedule duration synthesized by the proposed approaches is defined by the HP
duration of tasks allocated on the core, referred as local HP. However, this is only
applicable for schedule synthesis when PTP is used as buffering protocol. In SBP, the
schedule duration is typically defined equal to the global HP, defined by periods of
tasks running on all cores, because the buffer schedule is constructed for all cores and
the ISR™"* executes at the start of the global HP. The global HP of EMS tasks, given
in Table 3.2, is 1000 ms. To reduce the memory resources for storing the schedule table,
the schedule duration is defined as follows. In PTP, the schedule duration equals
the local HP. In SBP, if the local HP of the model equals 1000 ms, then the schedule
duration is 1000 ms. Otherwise, the schedule is generated for the duration of two
times the local HP because the second occurrence of the local HP repeats until the end
of one occurrence of the global HP. The first occurrence of the local HP repeats only
once at the beginning of the global HP.

The load coming from the timer’s execution, i.e., taking place for activation of tasks, is
calculated statically based on the configured overheads and the amount of jobs as

00, * jobs

= =

p (4.98)
where U}, defines the timer’s load and jobs indicates the number of jobs in the HP
interval with duration hp. In the evaluated models, the amount of jobs for SBP and
PTP are in the range 27 — 577 and 78 — 1728, respectively. The amount of jobs increases
linearly among models. Hence, the load coming from the timer execution is for SBP in
the range 0.11 % — 2.31 % and for PTP in the range 0.21 % — 4.61 %. These ranges are
equal in both benchmarks.

4.7.2 Feasibility

In this case study, the schedule synthesis algorithms are configured to terminate
after finding the first feasible schedule, if one exists, or after finding an infeasible
schedule. The feasibility results for the synchronous and asynchronous benchmarks
are shown in Figure 4.19 and Figure 4.20, respectively. In all depicted graphs, the
x-axis shows the computation load and the y-axis shows the Ratio (%) of models (out of
the studied set) that are Feasible, COMP-Infeasible, COMM-Infeasible, and OverUtilized-
Infeasible for each scheduling algorithm and each buffering protocol. Note that the

4.7 Evaluation | 179

B OverUtilized-Infeasible B OverUtilized-Infeasible
B COMM-Infeasible B COMM-Infeasible
JCOMP-Infeasible JCOMP-Infeasible
[l Feasible [l Feasible
1T 1 1T 1T T T 1T T T 1T T T 1T 1T T T T 1T 1T T T 711 1T 1T 1T 1T 1T T T 1T 1T 1T T 11111111 T
100 100
.8 50 .S 50
S I & i
0 0
30 39 48 57 66 75 84 9399 30 39 48 57 66 75 84 9399
Computation Load (%) Computation Load (%)
(a) TTS PTP (b) FPS PTP
T 1T T 1T T 1T T 1T T 1T T 1T I T T 1T T T T I FrT 1T T 1T T 1T T 1T T 1T T 1T T T T 1T T T T T 1T
100 100
e 2
= 50 5 90
~ ~
0 0
30 39 48 57 66 75 84 9399 30 39 48 57 66 75 84 9399
Computation Load (%) Computation Load (%)
(c) TTS SBP (d) FPS SBP

Figure 4.19: Benchmark 1 - Synchronous (LET = Period). Schedule feasibility of TTS and FPS
for applications that apply PTP and SBP protocols to integrate LET semantics.

x-axis does not show the load coming from buffering and the timer interrupt. Hence,
considering this additional load and the increasing computation load, the total load
of certain models exceeds the value 100 %. Therefore, the schedule of these models
is explicitly infeasible and is shown in the graphs by the OverUtilized-Infeasible plot.
The Feasible plot indicates the ratio of models for which a feasible schedule is found.
The COMM-Infeasible indicates the ratio of models that have an infeasible schedule
for communication tasks. In this case, communication tasks cannot be scheduled to
execute within their LET intervals. The COMP-Infeasible indicates the ratio of models
that have an infeasible schedule for computation tasks. In this case, communication
tasks have a feasible schedule, but the computation tasks not. In SBP, communication
tasks do not exist, and, hence, the COMM-Infeasible plot is not shown for SBP results.

Figure 4.19a and Figure 4.19b show the feasibility results of PTP models synthesized
by TTS and FPS for Benchmark 1, respectively. The results show that the Feasible ratio
of PTP in both scheduling approaches decreases with the increase of the computation
load. This occurs because of the stringent communication requirement of PTP and

180 | Scheduling Design

the extra load coming from the buffering and task activation. These aspects affect the
schedule feasibility of some PTP models also at low computational load. The ratio of
models with an infeasible communication schedule, depicted by plot COMM-Infeasible,
remains unchanged for model sets with computation load up to 75 %, apart from
small deviations, which occur due to the distribution of the buffering load to tasks of
different LET intervals and periods. An infeasible schedule for communication tasks
occurs in models that have the highest buffering load. In this case, the execution of
all coinciding LET Start and End jobs does not fit the smallest LET interval duration
among active tasks. If a schedule cannot be found for communication tasks, then the
software integrator must allocate tasks to different cores or increase the processing
resources until a feasible schedule is guaranteed.

The increase of the computation load increases the number of models exceeding the
100 % of total load. In both graphs, the ratio of OverUtilized-Infeasible models increases
with the increase of the computation load, which is expected because within a model
set of each computation load the buffering load is in the range of 0.5 % — 14 % and the
timer interrupt load is between 0.21 % —4.61 %. The COMM-Infeasible ratio drops when
the OverUtilized-Infeasible ratio increases because models that have such infeasible
communication schedule exceed the 100 % of total load and fall in the category of the
OverUtilized-Infeasible models. The trend of the Feasible ratio coincides with the trend
of the COMM:-Infeasible and COMP-Infeasible ratios. Hence, at most 76 % of models
with computation load up to 60 % have a feasible communication and computation
schedule. This ratio decreases further when the computation load exceeds 60 %. The
COMP-Infeasible ratio declines drastically starting with computation load 90 %, which
occurs due to the significant increase of the OverUtilized-Infeasible ratio. Model sets
with computation load > 90 %, have 50 % — 100 % of models with a total utilization
greater than 100 %. Therefore, the Feasible ratio declines after computation load 90 %.
The described behavior is occurring in both TTS and FPS results.

Figure 4.19c and Figure 4.19d show the feasibility results of SBP models for TTS and
FPS for Benchmark 1, respectively. The results show that TTS and FPS provide a feasible
schedule for all SBP models with a total load of up to 93 %. This is due to the fact that
SBP does not have stringent communication requirements and high buffer and timer
load. The impact of the computation load on the ratio of Feasible models occurs in
model sets with computation load between 93 % — 96 %. Because the buffering and the
timer’s load of SBP does not exceed the 2.31 % in total, the OverUtilized-Infeasible ratio
increases only for model sets with computation load 99 %. Model sets of computation
load 99 % have 82 % of models with total utilization greater than 100 %. Therefore, the
strongest decline of the Feasible ratio occurs when the computation load is 99 %.

Figure 4.20a and Figure 4.20b show the feasibility results of PTP models synthesized
by TTS and FPS for Benchmark 2, respectively. As in Benchmark 1, the OverUtilized-
Infeasible ratio increases with the increase of the computation load. Similar tendency
as in Benchmark 1 occurs for COMM-Infeasible, COMP-Infeasible, and Feasible ratios.
Therefore, this tendency is not further described here. In Benchmark 2, compared to
Benchmark 1, the impact of the buffering and computation load on schedule feasibility

4.7 Evaluation

B OverUtilized-Infeasible
B COMM-Infeasible

O COMP-Infeasible
[Feasible

rrrrr T T T T T T T T T T T T T T T
100 B
2 50 2
g g
0
30 39 48 57 66 75 84 9399
Computation Load (%)
(a) TTS PTP
rrrrrr T T T T T T T T T T T T T T
100 -
g g
5 20 S
~ ~
0

30 39 48 57 66 75 84 9399
Computation Load (%)

(c) TTS SBP

| 181

B OverUtilized-Infeasible
B COMM-Infeasible

0 COMP-Infeasible
[Feasible

100
1

50

030 39 48 57 66 75 84 9399
Computation Load (%)

(b) FPS PTP

30 39 48 57 66 75 84 9399
Computation Load (%)

100

50

0

(d) FPS SBP

Figure 4.20: Benchmark 2 - Asynchronous (LET < Period). Schedule feasibility of TTS and FPS
for applications that apply PTP and SBP protocols to integrate LET semantics.

182 | Scheduling Design

—— TTS SBP —— FPS SBP —e— TTS SBP —— FPS SBP
——TTS PTP —— FPS PTP ——TTS PTP —— FPS PTP

100 ® |
\

100 a—o—o—o—o—o—o—o—o—&g\ -

Feasible Ratio (%)
U
(a)
T j
" d
Feasible Ratio (%)
a1
(e}
/
=
|

N Nt

0 o8 00 ol T Tee38eese
30 39 48 57 66 75 84 9399 30 39 48 57 66 75 84 9399
Computation Load (%) Computation Load (%)

(a) Synchronous (LET = Period) (b) Asynchronous (LET < Period)

Figure 4.21: Feasibility ratio of TTS and FPS for applications that apply PTP and SBP protocols
to integrate LET semantics. The results with higher Feasible ratio in TTS than in FPS are marked
by the circles colored in orange.

is higher because of the reduced duration of LET intervals. This impact is evident in
both scheduling mechanisms and buffering protocols.

Figure 4.20c and Figure 4.20d show the feasibility results of SBP models for TTS and
EPS for Benchmark 2, respectively. In SBP, despite of the low buffering load, the Feasible
ratio decreases at a faster rate than in Benchmark 1, which occurs due to the reduced
duration of LET intervals. Hence, in SBP, considering the feasibility results of both
TTS and FPS, the synchronous task set design (Benchmark 1) provides a 100 % Feasible
ratio for computation load up to 90 % and the asynchronous task set design (Benchmark
2) provides the 100 % Feasible ratio for computation load up to 60 % for TTS and up
to 57 % for FPS. These results indicate that, despite of the benefits, e.g., reduction of
end-to-end delays, an asynchronous task set design limits functionality extensions of
next generations of an embedded application, also when SBP is used, unless further
design steps such as reallocation of new functions to other cores or the redesign of
LET intervals is applied. In this case, more hardware resources would be needed.

To compare TTS and FPS in terms of schedulability, the Feasible ratios of Benchmark
1 and Benchmark 2 are plotted in Figure 4.21a and Figure 4.21b, respectively. In
Benchmark 1, as shown in Figure 4.21a, TTS finds for PTP models with computation
load 81 %, 84 %, and 90 % exactly 2 % more feasible schedules than FPS. Additionally,
TTS finds for SBP models with computation load between 93 % — 94 % in average
6.6 % more feasible schedules than FPS. In Benchmark 2, as shown in Figure 4.21b, TTS
tinds for PTP models with computation load 51 % — 63 % and 69 % exactly 2 % more
teasible schedules than FPS. Additionally, TTS finds for SBP models with computation
load between 60 % — 75 % in average 4 % more feasible schedules than FPS. Better
feasibility results come from TTS due to its ability to enforce an arbitrary execution

4.7 Evaluation | 183

¥

Timer 1 1 1 1
3

0S_Overhead [I I I T

05_Overhead_Terminate T I I I T T
3 ¥

Task_2_20000.0us [| 1 T
¥

Task_3_50000.0us | | T |

50ms 55ms 60ms G5ms 70ms 75ms 80ms 85ms 90ms 95ms 100ms 105ms 110ms 115ms 120ms 125ms 130ms

Figure 4.22: A schedule snapshot of a SBP model with a feasible schedule in TTS but infeasible
schedule in FPS. The snapshot is taken in TA Tool Suite [163].

order between jobs, which is valid as long as they are completed within their LET
intervals. In FPS, the execution of active jobs is closer to their activation times and
is defined by the priority order of their tasks. A definite conclusion as to when TTS
provides a better schedulability than FPS could not be derived from the obtained
results. Nevertheless, it can be observed that in the asynchronous task sets, more
models have a feasible schedule in TTS, but not in FPS. This is reasonable since
the schedulability of a scheduling algorithm is determined by the sampled timing
information of tasks such as periods, offsets, LET duration and WCETs.

An example of a TTS schedule is given in Figure 4.22. The schedule snapshot belongs
to one of the SBP models from the Benchmark 2 for which a feasible schedule is found
with TTS but not with FPS. Only the Timer interrupt, the jobs for overhead handling
and tasks that directly impact the schedulability are shown, i.e., tasks Task_2_20000.0us
and Task_3_50000.0us. The deadlines of Task_2_20000.0us and Task_3_50000.0us are
10 ms and 25ms, respectively. At time 60 ms, highlighted by the first blue bookmark,
a job is released for each task Task_2_20000.0us and Task_3_50000.0us.

In the FPS scenario, Task_2_20000.0us would execute first if it has a higher priority than
Task_3_50000.0us. Otherwise, Task_2_20000.0us misses its deadline at time 60 ms, high-
lighted by the second blue bookmark. At time 80 ms another job of Task_2_20000.0us
releases, which in the FPS scenario, different to what is shown in Figure 4.22, would
be scheduled to execute after Task_3_50000.0us is preempted by the Timer interrupt
because Task_2_20000.0us would have the highest priority. In this case, the preempted
job of Task_3_50000.0us would miss its deadline at time 85 ms, highlighted by the
third blue bookmark. Reversing priorities between these two jobs again results in an
infeasible schedule in FPS.

In TTS, as shown in Figure 4.22, a feasible schedule exists because at time 80 ms, job
Task_3_50000.0us resumes its execution after the preemption of the Timer interrupt. In
this case, the execution of Task_2_20000.0us is shifted and deadlines of both tasks are
fulfilled. This behavior is not possible in FPS, because the ordering of jobs is defined by
priorities of their tasks. Therefore, a feasible schedule cannot be found for this model
by FPS. Although these results show that TTS can provide higher schedulability than
FPS, the FPS algorithm performs comparably well to TTS in terms of schedulability
considering the overall results of this evaluation.

184 | Scheduling Design

4.7.3 Resource Optimization

In this case study, the schedule synthesis algorithms are configured to provide an
optimal solution. The optimization goal is to minimize the number of preemptions of
computation tasks. To obtain an optimal solution within a reasonable amount of time,
a time limit of 6 h is enforced to the CP program. This time limit was set to give the
solver enough time to find the optimal solution for each model. Therefore, the solver
terminates when the optimal solution is found or when this time limit is reached. Note
that the optimal solution provided by the CP solver in this case is either the optimal or
a near sub-optimal solution. The time limit of 6 h is reached by TTS for 6.39 % of the
SBP models and for 5.56 % of the PTP models. This means that for these percentages
of models, the solver certainly provides a near sub-optimal solution.

The results of this evaluation are shown in Figure 4.23 and Figure 4.24 for Benchmark 1
and Benchmark 2, respectively. The box-plot graphs show the Relative Difference (%) of
the total preemptions between TTS and FPS versus the computation load. Negative
values of the Relative Difference (%) indicate that the optimal solution in FPS has a
higher number of preemptions than the one in TTS, and positive values indicate the
opposite. In these plots, only the results of models that have feasible schedules in
both TTS and FPS are shown. As expected, the results show that the TTS algorithm
provides overall optimal schedules with a smaller number of preemptions than FPS,
and, hence, less preemption overheads. This is due to the ability of TTS to shift the
execution of jobs to non-overlapping time intervals. It should be noted that the quality
of optimal schedules in TTS also depends on the ability of the constraint solver to find
the actual optimal solution. Based on our observations, in TTS, the feasible solution
space is higher than in FPS. Therefore, a large feasible solution space reduces the
solver’s ability to find the actual optimal solution, resulting in a sub-optimal solution
instead. In FPS, the solution space is smaller than in TTS due to symmetry constraints
enforced by the priority ordering between tasks. Therefore, due to the internal search
algorithm of the solver, only a statement about the general trend can be obtained for
the results of Figure 4.23 and Figure 4.24.

To show the extent to which TTS delivers optimal solutions of lower quality than FPS,
the Relative Difference (%) of Figure 4.23 and Figure 4.24 is summarized in Table 4.5.
The attribute TTS (%) shows the percentage of models for which TTS provides an
optimal schedule of lower quality than the one in FPS. The FPS (%) indicates the
opposite. The Equal (%) attribute shows that both scheduling mechanisms provide
optimal solutions of the same quality. For instance, in Benchmark 1, TTS provides for
17.5 % of PTP models an optimal solution of lower quality than the one provided by
FPS, and FPS provides a lower quality solution than TTS for 53.6 % of models. The
impact of the feasible solution space on the solution quality is evident also when the
results of PTP and SBP are compared. The rate of models that have a lower quality in
TTS than in FPS is smaller in PTP than in SBP. In PTP, the feasible solution space is

4.7 Evaluation | 185

40 I

20| . e,
o °
[)

of Bl

\
o
S

T

|
S
(e}
\
°
°

Relative Difference (%)

|
D
o
T
°
°
°
I

\
[
S

T

1

_100 I L4 L] L] L4 L [] [] o [] [} [) ° [] =l

| |
30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93
Computation Load (%)

(a) SBP

D
o
T
1

: %%%@

I
(e}
T
[
I

DO
o
T

H

i

|

—
[H

\
)
S

T

1

|
I
o
T
°
I

Relative Difference (%)
[LN]

\
D
o

\

°

°

\

\
o
S

T

[]

1

—100 L [L e o e o e o -

3‘0 3‘3 3‘6 3‘9 4‘2 4‘5 4‘8 5‘1 5‘4 5‘7 6‘0 6‘3 6‘6 6‘9 7‘2 7‘5 7‘8 8‘1 8‘4 8‘7 9‘0
Computation Load (%)
(b) PTP
Figure 4.23: Benchmark 1 - Synchronous (LET = Period). The Relative Difference (%) of the

preemption number of TTS and FPS schedule synthesis algorithms for the optimal found
schedule.

186 | Scheduling Design

80 a
L]
60 - :
10| . Ve . l
°
- o °
X 2F * s @ :
: T —
= 0 |
<
&
A —20 [I . N
2 .
Z 40 : g .
Q
~
60 L |
—80 | |
o
—100 |- ® e o e o o i
L L L L L L L L L L L L L L L L L L L
30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84
Computation Load (%)
(a) SBP
20| — |

l @E%$%§%§£é§%

S
g =20+ *
=t
&
Eg [
A 40 *
o
E ¢ ° ° ° ° ° .
= —60| . ‘ .
~
801 |
—100} e ° . ° ° ° |

3‘0 3‘3 3‘6 3‘9 4‘2 4‘5 4‘8 5‘1 5‘4 5‘7 6‘0 6‘3 6‘6 6‘9 7‘2 7‘5
Computation Load (%)
(b) PTP
Figure 4.24: Benchmark 2 - Asynchronous (LET < Period). The Relative Difference (%) of

the preemption number of TTS and FPS schedule synthesis algorithms for the optimal found
schedule.

4.7 Evaluation | 187

Benchmark 1 Benchmark 2
TTS (%) FPS (%) Equal (%) TTS (%) FPS (%) Equal (%)
SBP 175 53.6 289 27.1 50.1 22.8
PTP 10.8 60.2 29.0 20.7 49.5 29.8

Table 4.5: Summary of Relative Difference (%) of the number of preemptions.

smaller than in SBP due to the strict communication requirements and high buffering
and timer load.

These results show that TTS synthesis performs for the majority of models better than
FPS synthesis in terms of optimal schedule quality. Although not fully shown by
these results, it is expected that TTS synthesis provides equal or better optimization
outcome than FPS in all cases because of the way TTS schedules tasks. To improve
the search ability of the CP solver and the optimal solution quality of the schedule
synthesis, several search heuristics and decision strategies can be enforced to the
solver in OR-Tools. Based on our observations with several models from the model
set, the search heuristics and strategies have a significant impact on the optimization
results of TTS. Knowing which of the search and decision strategies lead to better
results for TTS and FPS, an extensive experimentation for this specific problem is
required. Identifying such strategies for both scheduling mechanisms is part of our
future work. In this evaluation, the “automatic” search strategy is used to achieve a
reasonable run-time of the solver, and no specific decision strategies are used.

4.7.4 Performance

In this section, the run-time performance of TTS and FPS scheduling synthesis algo-
rithms is discussed. The amount of time that each scheduling synthesis algorithm
requires to find the first feasible and the optimal schedule is given. Figure 4.25 and
Figure 4.26 shows the run-time results of the first feasible schedule of Benchmark 1
and Benchmark 2, respectively. Only the results of models that provide a feasible
schedule are shown. In graphs of Figure 4.26 less data are plotted than in graphs of
Figure 4.25 because fewer models have a feasible schedule when PTP is used. The
x-axis shows the Jobs (#), which defines the sum of the number of computation blocks
and of computation jobs that are solved by the synthesis algorithm. The Jobs (#) is
chosen to show these results because they directly impact the number of variables
and constraints in the CP program, and hence, the run-time performance. The y-axis
shows the Runtime (s) in logarithmic scale. The Runtime (s) shows the amount of
time that the CP solver takes to generate the computation schedule. Only this time is
shown because the solver has the highest impact in the performance of both schedule
synthesis algorithms.

188 | Scheduling Design

10 4 (ﬁ\ T j g‘
_ % B |
NZH 102 e % g
: £ # A
= = 1lqo0 £ =
ERN Y 5 108z be
g 10758 z |§8
T” oTTS 5) oTTS
‘ FPS 1071¢ FPS ||
102 L \ ! ! ! I T ! ! ! ! \
200 400 600 800 1,0 200 400 600 800 1,000
Jobs (#) Jobs (#)
(a) SBP (b) PTP

Figure 4.25: Benchmark1 - Synchronous (LET = Period). The run-time performance of TTS and
FPS schedule synthesis algorithms to provide the first feasible schedule. The gray horizontal
line shows the bound of the reasonable amount of time of 3.600s.

10% ¢ T T T 102 ¢ T T

g o ° g o ° i
: o 2 i
= 10} §§ = 101)
W B 3 W B : ol
I : - I ~
= b= 0L g &9 E
g 100 3 : E g 10 50;1:55 g E
F " L | A "]
ﬁ; oTTS (] . 5 oTTS |
10-1% FPS || 107" ¢ EPS ||
E ! ! ! ! I = L ! ! =
200 400 600 800 1,000 500 1,000 1,500
Jobs (#) Jobs (#)
(a) SBP (b) PTP

Figure 4.26: Benchmark 2 - Asynchronous (LET < Period). The run-time performance of TTS
and FPS schedule synthesis algorithms to provide the first feasible schedule.

4.7 Evaluation | 189

Although, the run-time behavior of the CP solver cannot be precisely evaluated due
to its black-box implementation, the run-time of the proposed schedule synthesis
algorithms is observed based on external influencing factors of the search algorithm’s
performance of the CP solver such as the application model’s characteristics and
complexity, which on the other hand define the size of the exploration and feasible
solutions space. As expected, the increase of Jobs (#) increases the run-time of both
schedule synthesis algorithms. However, the highest increase of the run-time is
observed for models of the same amount of jobs. One reason this occurs is because
models with different total load and equal number of jobs exist. Hence, in our
understanding, when the load increases, the feasible solution space is lower, which
means that the solver requires more time to search for a feasible solution, i.e., explores
longer the search space and performs, e.g., more backtracking. However, although
the run-time is generally increased with the increase of the load, one can notice
that outliers exist and the increase is not continuously linear. Which leads us to the
conclusion that the total load is one of the main influencing factors, but other aspects
also play an important role on the run-time performance, such as, e.g., at which
position on the search tree a feasible solution is found. This tendency is not explicitly
drawn in Figure 4.25 and Figure 4.26, but can be observed based on the data given
in Appendix A.2.

Did the scheduling synthesis algorithms provide a solution in a reasonable amount of time?
Let 3.600 s be a reasonable amount of time to provide a solution by a CP program.
In Benchmark 1, the TTS synthesis provides a first feasible schedule within this time
for approximately 99 % of SBP and PTP models. The FPS synthesis provides a first
feasible solution for all SBP and PTP models within this time. In Benchmark 2, both TTS
and FPS provides the results in less than 60's of time. In Benchmark 2 overall less time
is required to find a feasible schedule solution than in Benchmark 1 for both TTS and
FPS. This happens because in the asynchronous task sets, the constrained deadlines
(LET duration < period) decrease not only the possibility of finding a feasible schedule
but also the exploration space that is explored by the CP solver.

Which of TTS and FPS synthesis algorithms has a better run-time performance? Although
it is challenging to draw a definite conclusion if and why FPS synthesis has a better
run-time performance than TTS synthesis, or vice-versa, a rough comparison of their
absolute run-time difference is given in Figure 4.27 and Figure 4.28. In all graphs, the
Ratio of models (%) versus the Absolute difference of the run-times between TTS and FPS
is shown. The absolute differences are grouped in ranges >0s - 60s, >60s - 1h, and
>1h. Since the majority of the absolute run-time differences of TTS and FPS are in
the range >0s - 60, i.e., differences are considered relatively insignificant, it can be
inferred that both algorithms perform close to each-other in terms of run-time. In such
case, it is challenging to identify why the small differences arise, which can be due to
common operations in CP solver or due to exploration of the exploration space.

Benchmark 1 shows differences greater than zero between TTS and FPS for ranges
>60s - 1h and >1h. The results show that in absolute differences >60s - 1 h, TTS takes
more time to find the first feasible solution than FPS for 9.28 % of the SBP models and

190 | Scheduling Design

60 | | | 60 | | |

51.14 DDFPS > TTS 48.87 DDFPS > TTS
S 50 5 o 50| 2 5
& IBTTS > FPS S] IOTTS > FPS
)) A
< 1 < 40 | 36.
% 2
& s g 30|
S S
2 1 2 2
& . & 10|

\ 0 I
>0s-60s >60s-1h >1h >0s-60s >60s-1h >1h
Absolute difference Absolute difference
(a) SBP (b) PTP

Figure 4.27: Benchmarkl - Synchronous (LET = Period). The run-time comparison of TTS and
FPS schedule synthesis algorithms for the first feasible schedule. Bars notated as FPS > TTS
indicate that FPS requires more time to find a first feasible schedule than TTS and bars notated
as TTS > FPS indicate the opposite.

100} 00FPS > TTS || _ 100 JOFPS > TTS |
2 JETTS > FPS = 79.6 JETTS > FPS
'(_‘/) 80 [B .LD 80 1
< <
Q 60 |- = Q -
g g
B 40f 13 1
.8 .S
S 20f 18 1

0 00 00 00 00

T T T T
>0s-60s >60s-1h >1h >0s-60s >60s-1h >1h
Absolute difference Absolute difference
(a) SBP (b) PTP

Figure 4.28: Benchmark?2 - Asynchronous (LET < Period). The run-time comparison of TTS and
FPS schedule synthesis algorithms for the first feasible schedule. Bars notated as FPS > TTS
indicate that FPS requires more time to find a first feasible schedule than TTS and bars notated
as TTS > FPS indicate the opposite.

4.7 Evaluation | 191

Runtime TTS-SBP (%) FPS-SBP (%) TTS-PTP (%) FPS-PTP (%)
0s-60s 66.55 97.07 70.68 95.34
>60s - 30 min 23.25 2.93 17.74 4.66
>30min-1h 1.60 0.00 3.01 0.00
>1h 8.61 0.00 8.57 0.00

Table 4.6: Benchmark1 - Synchronous (LET = Period). The run-time of TTS and FPS schedule
synthesis algorithms to provide the optimal found schedule.

Runtime TTS-SBP (%) FPS-SBP (%) TTS-PTP (%) FPS-PTP (%)
0s-60s 97.08 100.00 96.32 100.00
>60's - 30 min 2.78 0.00 3.68 0.00
>30min-1h 0.00 0.00 0.00 0.00
>1h 0.14 0.00 0.00 0.00

Table 4.7: Benchmark2 - Asynchronous (LET < Period). The run-time of TTS and FPS schedule
synthesis algorithms to provide the optimal found schedule.

9.02 % of the PTP models. In absolute differences >1h, TTS takes more time for 1.05 %
and 1.2% of SBP and PTP models, respectively. For approximately 0.26 % of SBP
models and 1.65 % of PTP models, TTS and FPS take the same amount of time. In our
understanding, TTS has a bigger exploration space than FPS and if only few feasible
solutions exists, it takes more time for the CP solver to find a first feasible solution.
In TTS, compared to FPS, a higher preemption relation exists between overlapping
jobs because they can preempt each-other at any position, which is not constrained
by any priority ordering among them. In FPS, the exploration space is decreased by
the symmetry constraints enforced by the priority ordering among jobs. However,
as already emphasized, the run-time performance to find the first feasible solution is
impacted, among several reasons, by the complexity of the application model defined
by, e.g., the number of jobs, total load, and overlapping activation time intervals
between jobs. A relationship of the run-time and application’s characteristics could
not be identified when TTS and FPS are compared. Finally, these times do not depend
exclusively on the formalization of the described scheduling problems and on the
studied application models, but as well on the CP-SAT solver of Google OR-Tools
[162]. Therefore, it is expected that these times may vary when the proposed schedule
synthesis approaches are implemented with a different solver.

What is the run-time of TTS and FPS synthesis algorithms to obtain an optimal schedule? The
run-time results are shown in Table 4.6 and Table 4.7 for Benchmark 1 and Benchmark
2, respectively. The run-time values are grouped in ranges >0s - 60s, >60s - 30 min,
>30min - 1h, and >1h. The results of Benchmark 1 show that FPS provides the optimal

192 | Scheduling Design

solution within the 30 min of time for all SBP and PTP models. The TTS provides the
optimal solution within 1h for up to 91.39 % and 91.43 % of the SBP and PTP models,
respectively. For 8.57 % to 8.61 % of the models, TTS needs more than 1h to provide
the optimal solution. These results show that in TTS a larger number of models than
in FPS requires more than 30 min to find the optimal solution. In TTS, the time limit
of 6 h is reached for 6.39 % of the SBP models and for 5.56 % of the PTP models. In our
understanding, this is due to the larger feasible solution and exploration space of TTS
compared to FPS. Although the differences are less significant, the same observation
holds also for the Benchmark 2 results, except that none of the models reaches the 6 h
time limit. Comparing the run-time performance of Benchmark 1 and Benchmark 2, one
notices that in the second case both TTS and FPS provide the optimal solution within
the 1h time for 99.86 % to 100.00 % of models, which also results due to a smaller
feasible solution space.

4.7.5 Conclusions

The results of this evaluation demonstrate that the LET buffering overheads have a
significant impact on the schedulability of the application. Hence, SBP is a convenient
buffering approach to integrate LET also in terms of scheduling. PTP provides poorer
schedulability than SBP because it has a higher buffering and timer load than SBP
and stringent communication requirements for scheduling. Therefore, adding new
functionalities to the application requires more resources in PTP compared to SBP in
order to ensure a feasible schedule. The low scheduling performance of PTP is also
observed when timing information such as the duration of LET intervals is reduced,
which is usually needed to reduce the data ages and end-to-end delays.

Although both scheduling mechanisms demonstrate comparable feasibility capabili-
ties, TTS shows that it finds a feasible schedule also when one does not exist for FPS
and provides overall a schedule with lower number of preemptions. In general, TTS
offers other advantages that surpass the capabilities of FPS, such as deterministic task
execution and better resource utilization by avoiding peak loads, which is crucial for
LET applications. Because FPS is already integrated into existing automotive OSs,
it is typically the default approach chosen to schedule LET applications, which is
acceptable as long as hardware resources are not limited. The integration of TTS into
automotive systems is not only suitable for LET applications, but also for non-LET
applications to ensure deterministic end-to-end delays across different ECUs.

As described in this chapter, the automatic schedule generation of in-vehicle appli-
cations is highly necessary to speed up their development time. The performance
evaluation results have shown that the proposed schedule synthesis algorithms pro-
vide a feasible schedule in a reasonable amount of time for 99 % — 100 % of the studied
models. Therefore, integrating the proposed algorithms into an automated develop-
ment process is a solid practice. Although the reasonable time limit may be exceeded

4.7 Evaluation | 193

for model applications of certain complexity, executing constraint programming algo-
rithms in future quantum computers [164] is a promising way to improve the run-time
performance of CP solvers. Furthermore, as shown in the optimization results, es-
pecially of TTS, the search algorithm of the CP solver and the size of solution space
have a significant impact on the quality of the optimal solution and the run-time
performance of the synthesis algorithms. Therefore, to improve this, a combination
of reinforcement learning and constraint programming [165] is an attractive approach to
achieve the desired solution quality. Alternatively, the most suitable search heuristics
and decision strategies for this specific problem can be applied.

| 195

5 | Realization in AUTOSAR Systems

This chapter describes the integration of the Logical Execution Time (LET) into the
software architecture of the classic platform of AUTomotive Open System ARchitecture
(AUTOSAR). The successful integration of LET is demonstrated by a case study using
a real world Antilock Braking System (ABS).

5.1 Integration in Software Architecture

The following sections describe the methodology of integrating Point-to-Point Protocol
(PTP) and Static Buffering Protocol (SBP) into AUTOSAR software architecture and
aspects that impact the determinism of LET in highly event-driven AUTOSAR systems.

5.1.1 Methodology

In AUTOSAR, the LET paradigm is specified for the implicit Sender-Receiver commu-
nication between periodic runnables of different Software Component (SWC)s. Thus,
when runnables are mapped to LET intervals, their implicit Sender-Receiver accesses
use the semantics of LET. The Runtime Environment (RTE) enables the communication
between SWCs by providing the actual implementation of the different AUTOSAR
communication mechanisms (as shown in Section 2.2). Therefore, the PTP and SBP
mechanisms are integrated into the RTE layer of AUTOSAR to enable the use of LET
semantics between SWCs (as depicted in Figure 5.1). Whenever the embedded code
of the RTE is generated, e.g., by means of tools, the necessary data structures and the
respective Application Programming Interface (API)s are generated to accomplish the
LET buffering behavior. Although PTP and SBP can be integrated into an AUTOSAR
system in different ways, following their definition in this work, they are integrated
as follows. In PTP, the RTE generates for each LET interval and for each implicit
Sender-Receive communication between SWCs the global variables, buffers, and the
respective copy-in and copy-out operations as dedicated LET buffering runnables.
Because activation of runnables is enabled by RTE events, RTE also creates the events
to periodically activate the LET runnables based on the timing information of their
respective LET intervals, such as offsets and periods. Whenever necessary, the RTE
also generates the spin-locks and interrupt locks to ensure consistent and stable data
accesses within the LET buffering runnables. These runnables need to be mapped
to dedicated Operating System (OS) tasks, which in AUTOSAR are scheduled via

196 | Realization in AUTOSAR Systems

Application
[swc | [swc | | swc |
(N
LET RTE
(& J
(N
BSW
oS coM
e Scheduling | Services
e OS Tasks
(& J
Bus=

Figure 5.1: Integration of LET into the AUTOSAR Software Architecture

the Fixed-Priority Scheduling (FPS). As for PTP, the RTE generates for SBP the global
buffers, the buffer schedule, and the corresponding APIs for each runnable to access
the assigned buffer elements. If runnables of a LET interval send data to runnables of
another Electronic Control Unit (ECU) via LET semantics, the RTE calls inside the code
of the LET runnables the respective APIs of the communication services of AUTOSAR.
In case of SBP, the communication APIs are called by the computation runnables
at the end of their execution. The explicit and implicit Sender-Receiver accesses for
runnables that are not mapped to LET intervals are not affected by LET buffering.

The LET paradigm can be applied to AUTOSAR systems only for a subset of global
data elements for the following reasons. Typical in-vehicle applications have sporadic
or a-periodic runnables that require a faster input than other runnables such as crank
angle runnables of an Engine Management System (EMS) system. LET increases the
duration of the control flow and shifts the time of delivering outputs, and, hence, the
end-to-end delay requirements cannot be always satisfied in a highly event-based
and loaded system, even if the duration of LET intervals is reduced to be less than
their periods. Furthermore, due to the high data dependency between runnables, it
is challenging to derive a LET design that simultaneously provides faster outputs
and satisfies the data ages and end-to-end delay requirements for all Sender-Receiver
communications between runnables [73]. Moreover, LET buffering has additional
challenges and constraints in AUTOSAR systems. As described throughout this
work, SBP can be applied only for Sender-Receiver communication between periodic
runnables that access the data implicitly. A mixed LET and non-LET Sender-Receiver
communication of the same data elements, be it implicit or explicit, is not possible
in SBP, because runnables that read data via non-LET communication cannot know
which buffer element to read from. This limitation of SBP is due to its global buffering
methodology. Therefore, to reduce the complexity of handling such scenario in SBP,
the PTP can be used in an AUTOSAR system, in addition to SBP, if there is at least
one runnable that consumes a data element explicitly or via non-LET communication.

5.1 Integration in Software Architecture | 197

5.1.2 Determinism of LET

AUTOSAR systems are highly event-driven. A key challenge of integrating LET
buffering in event-based AUTOSAR applications, especially in multi-core platforms,
is guaranteeing time, value, and dataflow determinism. In SBP, determinism and
buffering correctness is violated when tasks are not activated and executed according
to their defined periods, LET intervals, and bounded activation jitters. In this case,
scheduled accesses to buffers by tasks may differ from the buffer schedule planned at
design time. This not only violates determinism but also can lead to data stability and
consistency issues when accessing shared buffers. Determinism of LET is also affected
when PTP is applied. The unpredictable activation jitters also affect the scheduling
design of such systems. This means that the schedule planned at design time may
deviate from the one on real target if tasks are not activated at expected times.

To ensure a correct execution behavior of LET buffering, the determinism of LET,
and predictable scheduling on real target, dedicated mechanisms must be employed,
such as reduction and bounding of activation jitters, monitoring of LET overruns at
run-time, and safe system restart in case of timing violations. In the following sections,
two mechanisms are described to ensure the above aspects of LET to an extent: the
synchronization of LET intervals and the controlling of LET overruns.

Synchronization of LET intervals

Synchronization of LET intervals is necessary to reduce activation jitters such that
these intervals occur at predicted times and the dataflow between them is guaranteed
when the system runs on target. Regardless of the buffering protocol, the physical
occurrence of the release and termination events of a LET interval correspond to the
respective activation time and absolute deadline of the computation task. It should be
noted that a LET interval is a logical time frame associated with a computation task
and does not physically occur at execution time unless intentionally tracked by special
interrupts. Hence, synchronization of LET intervals refers to the synchronization of
activation times of their respective computation and communication tasks.

Figure 5.2 shows an example of the effects that activation jitters have on dataflow
determinism between LET intervals. Figure 5.2a shows the expected dataflow between
LET Interval A and Interval B. At time t,, the outputs of Interval A are expected to
be available such that Interval B can consume them immediately after Interval A
terminates. In target execution, shown in Figure 5.2b, a long activation jitter occurs for
Interval A, which shifts the terminate event of Interval A beyond time t, and violates the
dataflow between intervals. Although this example is only an abstraction of the effects
that activation jitters have on dataflow determinism between LET intervals, in the case
of SBP and PTP, it is crucial to ensure that tasks do not execute during the unpredicted
overlapping time frame between LET intervals. As mentioned earlier in this section,
for SBP, concurrent execution of computation tasks during the overlapping interval is
critical because it can affect the correctness of the buffering behavior. Therefore, the

198 | Realization in AUTOSAR Systems

Release Terminate Release Terminate
| Interval A | [i: | Interval A |
b — i
/Dataflow Jitter 1 Violated Dataflow
| Interval B | Interval B |
T T T —> T T T —>
t t, t; Time t t t; Time
(a) Expected dataflow. (b) Violated dataflow.

Figure 5.2: Synchronization of LET intervals in AUTOSAR systems. The LET interval is
associated with a computation task. The release time of a LET interval corresponds to the
release time of the computation task. In (a), the dataflow is defined assuming zero activation
jitters of the computation task, i.e., LET interval. In (b), activation jitters occur during execution
of tasks on target, which violates the expected dataflow.

activation of these tasks must be synchronized and the jitters must be reduced to a
degree where the impact is insignificant and predictable during the design of the LET
buffering and schedule synthesis.

To increase the activation precision of tasks running on the same core, the schedule
tables of AUTOSAR OS can be used to activate tasks. In the previous chapter, such
table is referred to as activation table to distinguish it from the schedule table of the
Time-Triggered Scheduling (TTS). In multi-core systems, to synchronize the physical
occurrence of LET intervals of different cores, i.e., the corresponding computation
and communication tasks, the synchronization of schedule tables of different cores is
necessary. In this case, activation precision of tasks is affected by the synchronization
precision of schedule tables. AUTOSAR does not specify explicit mechanisms for
synchronizing schedule tables of different cores. The following two approaches are
described to enable the synchronization of tasks of different cores.

(i) Approach 1 —synchronizes only the start time of the schedule tables of different
cores. Their synchronization is enabled via OS barriers at the initialization, i.e,
startup phase of each core. In this case, the schedule tables are only started
after both cores have finished their initialization phase and at the same point
of time. This synchronization is only applicable if the hardware supports the
synchronization of hardware timers. This implies that the timers that drive the
schedule tables run on the same clock tick. The drawback of this approach is the
active waiting between cores during the synchronization of barriers, especially
in case of long start up phase or preemption delays of the startup routines.
Additionally, because only the start time of the schedule tables is synchronized,
delays on activation times at different expiry points can occur in case the timer
interrupt is delayed or preempted by interrupts of higher priority. These delays
can be reduced if the timer interrupt is defined to run on the highest interrupt
level inside the OS, e.g, in the level of the timing protection interrupt [19].

5.1 Integration in Software Architecture | 199

(ii) Approach 2 — synchronizes the activation of tasks of different cores by activating
them using a global schedule table defined for all cores [19]. In this case, the
activation of tasks of other cores is triggered by the timer interrupt of the core
in which the schedule table is defined. The timer interrupt initiates a cross-
core communication and the task is activated by the cross-core interrupt of the
remote core. The drawback of this approach is the overhead for the cross-core
communication and the violation of the “free from interference” requirement in
case of safety systems. Therefore, it can be used only for applications of the same
safety level. In this approach, activation delays may also occur if the timer and
cross-core interrupts are delayed or preempted by higher priority interrupts.

A schedule table is driven by a timer. Hence, another way to increase further the
task activation precision, such that it does not have major deviations to its initial
configuration, is to use a periodic timer to activate tasks. Such timers are more ac-
curate at determining the activation time of tasks. But their number is often limited
and cannot be applied when the application contains hundreds of LET intervals with
non-harmonic periods and duration. In case of non-harmonic periods, their use comes
at the cost of a higher execution load because a minimal period for the timer has to be
specified such that activation of all tasks is ensured. Therefore, the high-resolution
timer is typically used in such systems. High-resolution timers minimize the effects
of the high execution load of periodic timers in systems with non-harmonic periodic
tasks, but in practice do not enable high task activation accuracy and have a higher
execution load per instance of the timer interrupt. This is typically due to their internal
algorithm of defining the next activation point. The synchronization precision of
schedule tables across different ECUs also affects the activation precision of tasks.
However, this work focuses only in one ECU.

It is crucial to bound the activation jitters during development time and to incorporate
them into LET buffering design and scheduling synthesis, such that unpredictable
dataflow does not occur during system’s run-time. Such upper-bounding is usu-
ally possible at the development time through debugging and measurements of the
AUTOSAR systems.

Controlling of LET Overruns

Regardless of the buffering protocol, overruns of LET intervals must be prevented to
avoid violating the data flow determinism of LET. As with LET interval synchroniza-
tion issues, preventing LET overruns is crucial for the correct functioning of the LET
buffering behavior. Therefore, if a LET overrun is detected, then the task exceeding
the LET interval must be forcibly terminated. In the development phase of AUTOSAR
systems, LET overruns are prevented by constructing the schedule of tasks such that
they execute within the boundaries of their LET intervals. However, LET overruns
may happen when the system is running on target if unpredictable execution delays
occur at run-time. If the TTS is integrated in an AUTOSAR OS, specific mechanisms

200 | Realization in AUTOSAR Systems

must be implemented to prohibit the execution of tasks outside of the allocated time
intervals in the schedule table. In FPS, existing AUTOSAR mechanisms can be used.

Two aspects are important for preventing LET overruns in AUTOSAR systems. Firstly,
identifying that a LET overrun occurs and, secondly, taking an action to the detected
overrun. LET overruns may be treated as deadline violations. AUTOSAR does not
provide explicit deadline monitoring of tasks, but instead it defines timing protection
mechanisms to prevent timing faults [19]. These mechanisms can be applied for LET
applications to avoid LET overruns for the cases when these overruns occur due to (1)
unpredictable long execution times of LET and non-LET tasks and Interrupt Service
Routine (ISR)s, (2) early and unplanned arrival of certain tasks, and (3) unpredictable
long critical sections and long disabling of interrupts. Hence, an execution budget, a lock
budget, and an inter-arrival time frame can be specified for tasks and ISRs. If a violation
is detected, then the faulty task or ISR is forcibly terminated. The main drawbacks of
using timing protection mechanisms is the increased processing load and the forced
termination of tasks. The later case is often not desired for several reasons. If the
forcibly terminated task is a LET task, then the expected outputs may not all be
written to the buffers, which affects the value determinism of LET. In this case, the
next occurring reader LET intervals would read an old version of data. However, this
is a trade-off, especially in SBP, as long as the correctness of the buffer accesses is
guaranteed. Measurement and testing tools are also a practical approach to monitor
LET overruns during the development phase.

5.2 Case Study: Antilock Braking System (ABS)

The realization of LET in AUTOSAR architecture is shown using a real ABS running
on an AUTOSAR ECU. The abstraction of the ABS used in this case study is shown
in Figure 5.3. The purpose of an ABS is to ensure safe steering of the vehicle by
reducing the slip and preventing skidding and wheel lock in the event of high brake
force, regardless of road conditions. An ABS adjusts the brake pressure to keep the slip
in a certain ratio and thus shorten the braking distance. An important component of
an ABS is the controller, which reacts to vehicle sensor data, such as the wheel speed,
vehicle speed, accelerations, and pedal and steering angle, and calculates the slip ratio
and the brake force pressure. The slip ratio is calculated based on two control variables:
the vehicle and wheel speed and is later used to calculate the brake force pressure.
The system responds by applying this force to the wheels, turning on the brake lights,
and sending a throttle request to the engine to prevent further acceleration. When a
certain vehicle acceleration is reached, then the full stop of the vehicle is enforced.

The application shown in Figure 5.3 consists of various SWCs and software compo-
sitions that encapsulate the functionalities described above. The dataflow between
SWCs is indicated by arrows connecting different SWCs. The software composition
INPUT contains SWCs that receive sensor data from the bus and check their plausibil-

5.2 Case Study: Antilock Braking System (ABS)

| 201

Antilock Braking System (ABS) ECU

ABS CONTROLLER

@
vehicle speed @ @ slip vehicle N @

_ slip wheel __,

——— wheel speed
18 speed

©

BRAKE FORCE

A 4

brake set force —

INPUT I brake f"orce request
—— brake pedal angle BRAKE SET POINT
brake foice request @

—— accelerations ———> @

steering angle — —— brake light —b@
— throttle pedal angle —— VEHICLE STATE

VEHICLE uge speed
—— Wwheel speed —» SPEED — vehicle — SLIP slip——
[speed BRAKE
agg vehicle speed PRESSURE

accident
brake fressure

] OUTPUT
accident
—
THROTTLE throttle request @
Sensor Data Actuator Data

BUS-

Figure 5.3: Abstraction of the Antilock Braking System (ABS) components. The INPUT and
OUTPUT software compositions contain the SWCs that process sensor and actuator data,
respectively. The light blue boxes represent the main application SWCs that implement the
functionalities of the ABS. Three main outputs are provided to the actuator: the brake pressure,
brake light activation, and throttle request. The arrows marked with red, yellow, green, and
light blue indicate that the variables consumed by the SWCs must have the same data age, i.e.,
received and computed based on the same sensor data and of the same sampling time. The
stop watch icon with the time in ms indicates the periodic activation of runnables inside the
SWCs and compositions. In the OUTPUT composition, sending brake pressure and throttle
request outputs is enabled by runnables activated every 5 ms, and sending of brake light by

runnables activated each 10 ms.

202 | Realization in AUTOSAR Systems

ity. The processed sensor data is then stored in special global variables such as vehicle
speed, wheel speed, brake pedal angle, accelerations, steering angle, and throttle pedal angle.
This sensor data is later used by various components to calculate slip, brake pressure,
a request for brake force, detection of a possible accident, rear light activation, and a
throttle request to prevent acceleration. The software composition OUTPUT contains
SWCs that convert into correct physical values the generated outputs such as brake
pressure, brake rear light activation, and throttle request and send them to the actuator.

An important requirement of the ABS is to provide correct functionality, e.g., correct
brake force pressure in a short amount of time. This means that the delays between the
received sensor values and the provided actuator values must be as short as possible.
This delay is referred to as end-to-end delay. The functional correctness of the ABS
controller is affected by the occurrence of, e.g., poor slip response due to different data
ages of the wheel and vehicle speed inputs. Several design configurations can increase
the end-to-end delay and impact the functional correctness of the ABS. In multi-core
systems, functional correctness is hard to achieve because the execution order of
runnables involved in a dataflow must be handled explicitly if they are allocated to
run on different cores. Approaches such as synchronization of runnable’s execution
among cores by means of, e.g., OS barriers are inefficient in terms of overheads and
difficult to maintain in different software increments. Therefore, the LET paradigm
is applied to the ABS of this case study to ensure correct dataflow and functional
behavior without enforcing a specific execution order between runnables, regardless
of which core they run on. In this case, the dataflow and data ages between runnables
must be ensured by the design of LET intervals [73]. If LET intervals are not created to
guarantee timing requirements, dataflow and data ages between SWC, then functional
correctness of the system cannot be ensured.

The real world ABS used in this case study is of limited complexity and enables a
straightforward demonstration of the integration and practicality of the LET paradigm
and the synchronization aspects of task activation using the approaches described
in the previous section. The PTP is used for LET buffering since it is integrated in
MICROSAR RTE from Vector Informatik GmbH 1. The practicality of LET and the
effects of synchronization on buffering and functional correctness shown using ABS
are feasible for both SBP and PTP.

5.2.1 Configurations

The ABS application is run on a real platform composed by an Infineon Aurix TC39x
processor [166] and the MICROSAR OS/Stack of Vector Informatik GmbH 1 The
system is traced using the iC5700 debugger of iSystem [167] and the real measurement
data are evaluated in TA Tool Suite of Vector Informatik GmbH. Tasks of the ABS are
allocated to two different cores and the LET paradigm is used to exchange data for

lwww.vector.com

5.2 Case Study: Antilock Braking System (ABS) | 203

16 data elements exchanged between 16 SWCs. The configuration of LET intervals is
performed such that the correct dataflow, data ages, and the timing between SWCs of
the same and different cores is ensured. The application after configuration of LET
is composed of 11 LET intervals, 11 computation tasks, and 16 communication tasks.
Each computation tasks is associated to one LET interval. Each LET interval contains
runnables of equal periods belonging to the same SWC and the duration of the LET
intervals is defined equal to the period. For each application SWC, one interval
is created to simplify the LET design and apply the semantics of LET only for the
Sender-Receiver communication between different SWCs as specified by AUTOSAR.
Activation offsets of LET intervals are set to zero to observe the effects of activation
jitters when multiple tasks are activated simultaneously. Runnables of the same SWC
are mapped to one task to ensure the dataflow of the Inter-Runnable communication.
AUTOSAR does not specify LET for the Inter-Runnable communication [46].

This case study applies LET for the dataflow between SWC that provide the following
functionalities of the ABS:

> Brake light activation — the dataflow is defined between LET intervals: Input,
Brake Set Point, Vehicle State, and Output Light

> Throttle request to the engine — the dataflow is defined between LET intervals:
Input, Vehicle State, Throttle, and Output Throttle

> Brake pressure calculation — the dataflow is defined between LET intervals: Input,
Vehicle Speed, Brake Set Point, Brake Force, Slip, Brake Pressure, and Output
Pressure

Figure 5.4 depicts the dataflow between LET intervals for each of the aforementioned
functionalities of the ABS. As indicated by the red arrows, the dataflow and data
ages for the brake pressure calculation are ensured because computation of intermediate
results and final output is performed based on sensor input data of the same sampling
time. The same applies for the throttle request and brake light activation functionalities.
This design of LET intervals guarantees functional correctness and control quality of
the ABS. In this case, the end-to-end delays for brake light activation, throttle request,
and brake pressure calculation functionalities are constant and consist of 25ms, 20 ms,
and 25 ms, respectively. The described design of LET intervals guarantees functional
correctness at design time by itself, but this end-to-end delay and dataflow is expected
when the system is running on the real target. This is ensured by synchronizing
activation times of LET intervals and preventing long activation jitters.

The ABS is run on the target and traced for three configurations. In the Unsynchronized
configuration, the synchronization of the activation of LET tasks on different cores is
not enabled. However, tasks of the same core are synchronized by activating them
via a schedule table created for each core. In the second configuration, the Approach
1 is used to synchronize the start of the schedule tables of each core, and, hence,
synchronize the activation of LET tasks of different cores. In the third configuration,

204 | Realization in AUTOSAR Systems

INPUT 5ms INPUT 5ms
| velhicle speed
brake | wheel brake pedal angle
pedal | speed agg
anele L5 VEHICLESPEED __ ,.icle
7 speed

02
BRAKE[SET POINT BRAKE SET POIN

1
brake force request ——3,
BRAKE

— brake set force
agg FORCE
vehicle accident ——3
speed
slip
SLIP — slip vehicle speed
slip wheel speed
N
BRAKE
PRESSURE ~— |
steering angle
accelerations — brake force request
throttle pedal angle VEHICLE STATE TIET(ETLE STATTa
———
accial’ent brake pressure
THROTTLE

T
throttle request

OUTPUT
THROTTLE 5ms
A 4
OUTPUT PRESSURE
Sms
brake light

OUTPUT LIGHT 10ms

Figure 5.4: The dataflow between LET intervals of the ABS. The highlighted gray, blue, yellow,
and purple boxes indicate the occurrences of LET intervals involved in the dataflow for the
brake light activation, throttle request, and brake pressure calculation functionalities. The pattern
filled gray and blue boxes indicate occurrences of LET intervals not involved in the highlighted
dataflow. The dataflow of the brake pressure calculation functionality is marked by the red arrows
connecting the respective LET intervals. The dataflow of the brake light activation and throttle
request are marked by yellow and blue arrows, respectively.

5.2 Case Study: Antilock Braking System (ABS) | 205

Approach 1

Approach 2

290.8 B

Unsynchronized

| |
0 50 100 150 200 250 300 350 400
Activation Jitter (pus)

Figure 5.5: The maximal activation jitter between cores.

the Approach 2 is used to synchronize the activation of LET tasks of all cores. In this
case, one global schedule table is created to activate tasks. Because the timer interrupt
of the master core, in which the global schedule table is defined, initiates the activation
of other tasks to the remote core by triggering a call of the cross-core interrupt, this
request is performed first and then tasks of the master core are activated. In this way,
the activation of tasks occurs in parallel between the cores and the synchronization
precision is reduced. In all configurations, the schedule tables are driven by a high-
resolution timer.

5.2.2 Results

This section describes the evaluation results for the synchronization jitters of LET
intervals, functional correctness, and timing of the ABS in LET.

5.2.2.1 Synchronization of LET Intervals

Synchronization accuracy between cores is measured as the time difference between
the activation time of the first activated task on one core and the activation time of the
last activated task on the other core. Synchronization accuracy is also referred to as
activation jitter. The accuracy is measured only for LET Start and computation tasks
because their activation represents the release time of their respective LET intervals.
Figure 5.5 shows for each configuration the maximal activation jitter between the
two cores. The maximal jitter occurs at activation points in which all LET Start
and computation tasks are activated. Because the application has LET intervals of
different periods, a different number of tasks are activated at different activation
times. At most 12 tasks on Core 0 and 10 tasks on Core 1 are activated simultaneously.
The results show a significant activation jitter between cores for the Unsynchronized
configuration. This time exceeds the maximum net execution time of each core’s timer

206 | Realization in AUTOSAR Systems

Approach1 Approach 2
Activation overhead (%) 7.62 8.82
OS barriers overhead (%) 0.005 —

Table 5.1: Task activation and synchronization run-time overheads.

interrupts, which are 54.5ps and 59.2 ps for Core 0 and Core 1, respectively. This
activation jitter causes the LET intervals of different cores to overlap incorrectly, thus
affecting the dataflow and time determinism. This jitter is significantly improved
when synchronization is applied for Approach 1 and Approach 2 configurations. In both
cases, the maximum activation jitter does not exceed the time between the start of the
timer interrupt of one core and the end time of the timer or cross-core interrupt of the
other core. Because of the synchronization, these interrupts execute simultaneously
on their respective cores. An absolute zero activation jitter cannot be achieved because
the activation time of a task corresponds to the time that the timer interrupt sets the
task in active state. If multiple tasks are activated in one expiry point of the schedule
table, then the timer interrupt iterates over the list of tasks that must be activated and
sets them to the active state. This also implies that the lower the number of tasks to
be activated in an expiry point, the lower is the activation jitter of the tasks and the
execution run-time of the timer interrupt. As long as these jitters and activation of
tasks are bounded within the execution times of the timer and cross-core interrupts,
the incorrect overlapping of LET intervals is avoided and buffering correctness is
ensured in both PTP and SBP.

The activation jitter is higher in Approach 2 than in Approach 1 because when a global
schedule table is used to activate tasks of all cores the cross-core communication delays
are involved. In this evaluation, the high-resolution timer is not delayed or preempted
by other interrupts. In systems with a large number of hardware interrupts that cause
considerable delays of the timer interrupt, these jitters can be significantly higher in
both approaches. The applicability of LET in such systems is then questioned by the
extent to which these delays can affect the determinism requirement of LET and the
synchronization of LET intervals.

Table 5.1 shows the run-time overheads associated with task activation and synchro-
nization. The run-time overheads for task activation refers to the execution utilization
of the timer interrupts and the cross-core interrupt (in the Approach 2 only). As already
mentioned, these overheads are not only dependent on the internal algorithm of these
interrupts, but also on the number of tasks to be activated. They also dependent on the
implementation of the OS and may vary between different versions or vendors of the
OS. In this evaluation, the run-time activation overheads for Approach 1 and Approach
2 are 7.62 % and 8.82 %, respectively. A slightly higher activation utilization occurs for
the Approach 2 because of the cross-core communication. In Approach 1, an insignificant
amount of 0.005 % execution load occurs in addition during the initialization phase

5.2 Case Study: Antilock Braking System (ABS) | 207

terminate event of the
flush buffering routine

release event
INPUT) |

VEHICLE SPEED T L]

BRAKE SET POINT T Il |

BRAKE FORCE ‘E
BRAKE PRESSURE T 1

OUTPUT PRESSURE 5ms T 1 |

Figure 5.6: Event chain definition for the brake pressure calculation functionality. The blue
dashed line represents the event chain of the dataflow between LET intervals illustrated by
the white boxes.

due to the OS barrier synchronization. This corresponds to the active waiting time of
the initialization task on Core 1 until the initialization task of Core 0 has completed all
operations until barrier synchronization.

5.2.2.2 Functional Correctness and Timing

Considering the achieved synchronization precision between LET intervals and the
configured LET design, the end-to-end delays, i.e, timing and the dataflow between
application SWCs of the ABS are fulfilled. To evaluate the functional correctness and
timing, the dataflow between LET intervals involved in each ABS functionality is eval-
uated by means of event chains [59]. An event chain is created for each functionality
and their maximal duration is calculated based on the generated measurement traces
of the ABS. The stimulus event of each event chain corresponds to the release event of
the Input LET interval and the response event to the terminate event of the copy-out
buffering routines of the respective Output LET intervals. To show the definition of
event chains, the event chain for the brake pressure calculation is shown in Figure 5.6 as
an example. Because the PTP is used in this evaluation, the actual flushing of the data
to the buffers occurs “close” to the terminate event of the Output LET intervals. Hence,
to capture the actual dataflow, the event chains are defined between release events
of LET intervals involved in the chain and the terminate event of their respective
copy-out buffering routines. An event chain is a composition of segments defined
between each LET interval involved in the dataflow.

Table 5.2 provides the duration of the event chains of each functionality for each
synchronization approach. The results show that the event chain duration of each
functionality varies between synchronization approaches. This happens because, as
shown in the previous section, the activation jitters between LET intervals are higher

208 | Realization in AUTOSAR Systems

Event Chain Duration Approach 1 (ms) Duration Approach 2 (ms)
EC Brake Pressure 24.047 24.125
EC Brake Light 24.065 24.129
EC Throttle 19.051 19.133

Table 5.2: The event chain duration of the dataflow between LET intervals.

in Approach 2 than in Approach 1. In PTP, the end-to-end delay of a dataflow is not
absolutely constant but is defined by the activation offsets of the copy-out buffering
routines mapped to LET End tasks. This is shown by these results, in which the event
chain duration of brake light activation, throttle request, and brake pressure calculation
functionalities does not exceed their respective 25 ms, 20 ms, and 25 ms delays defined
by the design of LET intervals. Overall the results show that the control quality is
ensured because the dataflow and execution order between LET intervals is fulfilled
and the slip value, the vehicle speed, and the wheel speed have the same data age
when they are used to calculate the brake pressure. This is achieved by synchronizing
LET intervals and by the LET buffering mechanism.

As described throughout this work, in PTP the actual flushing of the data is defined
by the activation offsets of LET End tasks. Therefore, the dataflow and event chain
duration between LET intervals can be ensured also in the Unsynchronized configu-
ration if these offsets are assigned to define a correct activation order between LET
End task of the producer LET interval and the LET Start task of the consumer LET
interval. However, this approach is not recommended as it increases the effort and the
complexity of verifying the dataflow and end-to-end delays between LET intervals.
Furthermore, in systems of high complexity, relative to the ABS used in this case
study, the synchronization jitter in the unsynchronized configuration is expected to
be greater than 290.8 us, which may result in an offset assignment that cannot satisfy
the dataflow between LET intervals. Thus, looking to the future of highly complex
systems using the LET paradigm, interval synchronization is an essential part of their
LET integration. In SBP, any incorrect overlap of LET intervals endangers the correct-
ness of buffering. Therefore, synchronizing LET intervals is mandatory in systems of
any complexity. For this reason, the duration of event chains and the dataflow for the
Unsynchronized configuration is not compared in Table 5.2.

5.2.3 Conclusions

The conducted case study showed that LET is a practical approach to ensure functional
correctness between SWCs executing on different cores. Besides ensuring LET seman-
tics through the buffering and scheduling design, the synchronization of LET intervals
on the same and different cores is absolutely necessary to ensure the determinism of

5.2 Case Study: Antilock Braking System (ABS) | 209

LET in a highly event-driven system. Without this synchronization, the functional
correctness of the LET system is affected. Hence, the described synchronization ap-
proaches are a practical way to reduce activation jitters of LET intervals and achieve
the desired LET determinism in an AUTOSAR system. However, the case study was
conducted on conditions where timer and cross-core interrupts are not delayed or
preempted by other urgent interrupts. To ensure this synchronization accuracy, the
delays or preemptions of these interrupts must be avoided.

| 211

6 | Conclusions and Future Work

This chapter presents the conclusions of this thesis and the future work. A summary
of the conclusions and experiences regarding the proposed buffering and scheduling
approaches are given, followed by the future work described at the end of this chapter.

6.1 Conclusions

In this work, buffering and scheduling techniques were presented for the resource effi-
cient integration of the Logical Execution Time (LET) into automotive systems. The Static
Buffering Protocol (SBP) was proposed as a resource efficient buffering mechanism to
ensure data exchange semantics of LET (Contribution C1). SBP was designed to reduce
the run-time of buffering operations and the memory capacity required to preserve
LET semantics. This was done by incorporating a static and global buffering strategy
and by describing a buffer synthesis algorithm that suppresses unnecessary writes.
Since automotive applications are event-based, this work provided a comprehensive
definition of the lock-based Point-to-Point Protocol (PTP) for LET and described its use
for specific application configurations.

In addition to buffering, two schedule synthesis approaches have been proposed to
guarantee LET semantics and fulfill timing and performance requirements under the
influence of the Operating System (OS) overheads (Contribution C2). The approaches
consider the buffer semantics of the two aforementioned LET buffering protocols.
Since minimizing scheduling overheads was one of the goals of this work, the Con-
straint Programming (CP) technique was used to solve the schedule synthesis problem.
Therefore, a constraint-based formulation was proposed for two different scheduling
algorithms, Time-Triggered Scheduling (TTS) and Fixed-Priority Scheduling (FPS), which
have different scheduling semantics compared to each other.

Two different scheduling mechanisms were considered to observe the advantages
and practicality of each approach for LET applications. Unlike related work, the
proposed formulations take into account different types of overheads and delays
caused by the execution of high-priority tasks, of context-switch operations, and of OS
interrupts such as the timer. In particular, unlike related work, a unique method for
validating the feasibility of scheduling as part of the constraint problem was proposed
for FPS, which, as expected, showed to be a time-efficient approach in the conducted
experiments.

212 | Conclusions and Future Work

Case studies considering characteristics of industrial applications and future function-
ality extensions (Contribution C3) were performed to evaluate the buffering protocols
and scheduling mechanisms in terms of performance, memory requirements, and run-
time. In this way, their capabilities and resource demands of LET could be estimated
for the future industrial applications. To show the practicality of LET in automotive
systems, the integration of LET buffering for the classic AUTomotive Open System
ARchitecture (AUTOSAR) platform was described. Challenges and solutions to ensure
determinism of LET and correctness of buffering in event-driven AUTOSAR systems
were proposed. A case study based on a real world automotive system was conducted
to show that LET is a feasible approach to ensure end-to-end delays and deterministic
dataflow between Software Component (SWC)s of AUTOSAR applications.

Based on the experiences gained during this work, it can be concluded that LET is a
feasible way to ensure time and dataflow determinism between periodic functions
of automotive applications. Although it requires additional resources, these can be
reduced by efficient integration of its semantics and by optimizing the schedule of
tasks. Based on the conducted studies, it can be stated that SBP is an efficient approach
to integrate LET semantics for automotive applications. The results showed that
SBP performs better than PTP in several aspects. SBP incurs negligible processing
load, provides zero communication time at the boundaries of LET intervals, and
reduces the memory resources required to maintain LET semantics. Furthermore, it
performs better in terms of schedulability on both TTS and FPS due to its low buffer
and timer load. Therefore, it can be concluded that SBP provides more scope for future
extensions of the application, as it allows to ensure a feasible schedule also during
high load peaks, and more data elements can be exchanged via the LET semantics.
However, due to its static buffer schedule configuration, it cannot ensure hybrid data
exchange between periodic and a-periodic or sporadic tasks for write-write and read-
write communication interactions and is more sensitive to activation jitters regarding
buffering correctness. For this reason, PTP is used in these cases.

In terms of scheduling, it can be stated that any of the scheduling mechanisms can be
used to schedule LET applications. However, as the conducted research shows, TTS
has less complexity in solving the scheduling problem and it provides greater oppor-
tunities to reduce the run-time overheads caused by context switching. In addition,
when implemented correctly in an OS, it ensures deterministic execution of tasks and
can avoid LET buffering violations in the event of unpredictable long preemption and
start delays without the need to use timing protection mechanisms of AUTOSAR [19].
In a dynamic operating environment, such as in an event-driven AUTOSAR OS,
semantic violations of LET buffering must be prevented and monitored by specific
mechanisms during system operation, regardless of the used buffering and scheduling
mechanism. This is because automotive systems are highly event-based and it is
difficult to completely avoid task activation jitters. Nevertheless, in both buffering
mechanisms the effects of activation jitters on dataflow determinism between LET
intervals must be reduced in all situations independent of the scheduling mechanism.
This means that the dataflow and execution order between LET intervals must be iden-

6.2 Future Work | 213

tical at design time as in target execution. However, for SBP, such monitoring is more
difficult to handle when FPS is used. Hence, TTS is the most convenient scheduling
approach to ensure correct SBP buffering operation by means of deterministic task
execution. It is important to note that integrating TTS into existing AUTOSAR OS is
particularly challenging because this OS is purely event-based and is constructed to
handle a variety of event types. Therefore, it is necessary to extend its foundations
to be time-driven and to integrate the semantics of TTS and FPS into one system to
obtain the characteristics of a wide range of applications.

Finally, it can further be concluded that it is essential to integrate automatic buffering
and scheduling configuration of LET into commercial tools to automate the design
process of highly complex industrial applications. The problem of scheduling in partic-
ular is highly complex and doing it manually is inefficient and increases development
time and effort. As shown in this work, constraint programming is a necessary way
to solve the scheduling problem because it is able to provide solutions of a satisfy-
ing quality and fulfill multiple requirements simultaneously. However, maintaining
constraints with new functionalities in commercial products requires experienced
engineers in the CP technology and considerable amount of effort and resources due
to the abstraction of the CP logic. It should be noted that CP allows the description of
the scheduling problem only for application attributes that are deterministic in nature,
e.g., only for periodic tasks. Events with unknown arrival times are hard to describe
by CP constraints without pessimistic assumptions as a trade-off.

6.2 Future Work

During this work, several attractive research directions were identified that can extend
the work presented in this thesis. These research directions are outlined below.

Design of LET Intervals

The integration of the LET paradigm into automotive systems involves several design
aspects. In this work, two of the most important designs aspects have been presented,
as well as approaches to enable the practicality of LET in AUTOSAR systems. To
complete the development flow of LET applications, the design of LET intervals
is necessary. Although a basic LET design can be defined, for applications with
highly interconnected runnables, an automated approach to derive LET intervals
is required to handle the complexity of the problem. This is especially important
because the timing information of LET intervals must ensure not only the dataflow
and execution order between runnables, but also their timing requirements. This
design step is usually performed before buffering and schedule synthesis. However,
in order to design LET intervals, the impact of the buffer must be known in advance,

214 | Conclusions and Future Work
ECcor | | ECU1
Classic ™ End-to-End Delay -- Classic
gl S2 G
o e R — e
tlo ;t] tlg tl3 flme tl4 5 l!g tl7 flme
E] 1 Send Receive
" Data Data |
—_— — [[[Bus=
Unpredictable time delay

Figure 6.1: System-Level Determinism.

and a feasible schedule for these LET intervals must be guaranteed. Therefore, the
design of LET intervals is coupled with the buffer and scheduling design in a closed
development loop. The design of LET intervals for an AUTOSAR application includes
the following tasks. Firstly, defining LET intervals and their timing information such
as the activation offset, period, and LET interval duration. Secondly, the mapping
of runnable entities to LET intervals, which enforces that they use LET semantics
to exchange data with runnable entities of other LET intervals. Finally, it must be
specified which data accesses within these runnables use the LET semantics. It should
be noted that this design aspect is often coupled with the assignment of runnables to
tasks and processor cores, which introduces more complexity to solving this design
problem.

System-Level Determinism

The LET semantics, buffering, and scheduling design presented in this work are
applicable to AUTOSAR classic applications within one Electronic Control Unit (ECU).
However, in-vehicle applications are distributed across multiple ECUs and have end-
to-end timing requirements beyond one ECU. Moreover, these ECUs can contain not
only AUTOSAR classic applications, but also AUTOSAR adaptive applications that
normally run on Linux-based OSs. The LET paradigm, as currently defined, cannot
guarantee timing and dataflow determinism for applications deployed on different
ECUs and for communication between different platformes, i.e., classic and adaptive.
The system-level LET is introduced in [78, 168] as an extension of LET to provide
timing and dataflow determinism between applications deployed in different ECUs
or hardware platforms.

To understand the need for LET at the system level, an example of data exchanges
between two LET intervals from two different ECUs is given in Figure 6.1. In this
example, the first occurrence of LET interval /et; of ECU 1 provides outputs to the
LET interval let; of ECU 2 at time t;. These outputs are sent over the physical bus at

6.2 Future Work | 215

time f; or later, depending on the scheduling, and are received in ECU 2 just before
the start of LET interval let; or some time later. In this case, whether the interval
let; receives the data at its start time or not depends on the bus scheduling and
traffic. In this example, the end-to-end delay requirement is the time interval defined
by time intervals S1, S2, and S3. The duration of time interval S2 is unpredictable
due to the unpredictable time delay caused by the bus traffic. Therefore, in certain
situations, e.g., for different occurrences of LET intervals let; and lety, the data is
received just before, some time after, or exactly at the start of the LET interval let.
This enforces non-deterministic data flow and end-to-end delays between these LET
intervals. Therefore, describing the time interval S2 as a system-level LET interval,
the dataflow and time determinism between two local LET intervals is possible. The
system-level LET guarantees determinism by enforcing that data sent by the sender
LET interval is sent at the release time of the system-level LET interval and is made
available to the receiver LET interval at the end of the system-level LET interval, even
if the data is received well before that time. In this case, the system-level LET interval
is a time interval with the release time in one ECU and the terminate time in the other
ECU. Hence, LET and system-level LET can only together guarantee deterministic
dataflow and end-to-end delays of distributed in-vehicle applications.

As with LET, the following research aspects are of interest for the system-level LET:

> Design of system-level LET intervals: Designing system-level LET intervals presents
a similar problem to designing LET intervals. The assignment of timing infor-
mation for system-level LET must take into account not only end-to-end delay
requirements, but also realistic bus delays resulting from scheduling and tim-
ing synchronization delays. It should be noted that the clocks of the various
ECUs are synchronized with some accuracy delay that can impact the timing of
system-level LET. In practice, the design of system-level LET intervals is most ef-
fectively carried out together with the design of LET in a top-down development
approach. These two problems are therefore best solved in one step.

> Buffering mechanism for system-level LET: The semantics of system-level LET
must be ensured by a buffering mechanism in the receiver ECU. A buffering
protocol shall store all incoming input from sending LET intervals and provide
the receiving LET interval with the appropriate data corresponding to the system-
level LET timing information. Without a specific buffering mechanism, system-
level LET behavior cannot be guaranteed. It should be noted that buffering for
system-level LET incurs additional memory and run-time overheads that must
be kept to a minimum. Therefore, research on buffering protocols that reduce
these overheads is highly necessary.

> System-level schedule synthesis: Bus and OS scheduling must guarantee that
the sending and receiving of data between LET intervals of the various ECUs
occurs on time. Within an ECU, the schedule synthesis algorithms presented
in this work can be applied. However, since the data in the receiving ECU is

216 | Conclusions and Future Work

usually processed using sporadic or a-periodic events, the proposed approaches
need to be extended to account the execution of sporadic and a-periodic tasks.
In addition, bus schedule synthesis that takes into account system-level LET
semantics and the schedule mechanisms of different communication protocols is
required.

Schedule Synthesis Extensions

The proposed algorithms for schedule synthesis can be enhanced to include the
following aspects:

> Start delays caused by critical sections: In this work, it was assumed that low-
priority computation tasks do not use interrupt locks during their execution.
Nevertheless, these tasks can disable preemption for a certain time during critical
non-LET data operations. This is especially important when the execution
of sporadic and a-periodic schedules is considered in the schedule synthesis.
Therefore, an extension of the proposed formalization to handle these delays is
essential for tasks that exchange data via non-LET mechanisms.

> Optimizations of the search strategy to improve the quality of the optimal solution:
Although the presented schedule synthesis algorithms were designed to be
effective in terms of run-time by, for example, reducing the complexity of the
problem and providing an efficient formalization, further optimizations in the
search algorithm of the CP solver are needed. This can be realized by, e.g.,
implementing the proposed formulations in other CP solvers, combining the
reinforcement learning and constraint programming [165], or configuring the most
suitable search heuristic and decision strategy for this specific problem. This is
especially necessary in TTS schedule synthesis because of the large solution and
exploration space.

> Synthesis of cooperative FPS scheduling: Reduction of context-switching overheads
and memory demands caused by preemption by employing and synthesizing
cooperative FPS scheduling.

| 217

A | Appendix

A.1 Evaluation of Inter-Task Communication Design

Synthetic Benchmarks

This section provides the evaluation results of the synthetic benchmarks of Static
Buffering Protocol (SBP) and Point-to-Point Protocol (PTP) evaluation.

A.1.0.1 Memory Evaluation

The attributes of the tables listed in this section are described as: M — the model
identification number, D — the amount of data elements, A — the amount of data
accesses, Byt — the amount of buffers for PTP, By, — the amount of buffers for SBP-
G, Bsppr — the amount of buffers for SBP-L, G, — the required global memory size
for storing D data elements in the unbuffered model, Gp;,(kB) — the required global
memory size for storing B¢, amount of data in PTP, G, (kB) — the required global
memory size for storing Bg,,, amount of data in SBP-G, Gy (kB) — the required global
memory size for storing B, amount of data in SBP-L, L, — the amount of local
variables for PTP, Ly, — the amount of local variables for SBP-G, L, — the amount
of local variables for SBP-L, S;,(kB) — the maximal stack memory size for storing Ly,
amount of local data in PTP, S, (kB) — the maximal stack memory size for storing
Lgppe amount of local data in SBP-G, and S, (kB) — the maximal stack memory size
for storing Lg,; amount of local data in SBP-L.

Table A.1: Results of the global buffer size for EMS models.

M D A Bu Bay By Gu®B) Guy(kB) Guye(kB) Guyi(kB)
1 100 500 586 426 358 1.1 6.5 4.7 4.0
2 200 1,000 1,157 863 718 2.2 12.8 9.6 7.8
3 300 1,500 1,754 1,281 1,057 3.1 18.2 13.5 11.0
4 400 2,000 2332 1,718 1437 42 24.2 17.9 15.0
5 500 2500 2903 2109 1,760 4.7 27.5 20.0 16.5
6 600 3,000 3,477 2,575 2,168 6.0 34.7 25.6 21.5

218 | Appendix
Table A.1: Results of the global buffer size for EMS models.

M D A By By Bay Gu(B) Gup(kB) Guypg(kB) Giyy(KB)
7 700 3500 4,060 3,001 2,539 7.3 42.3 31.6 27.0
8§ 800 4,000 4,639 3,420 2,838 8.8 51.2 37.6 31.2
9 900 4500 5223 3,829 3,185 9.6 55.6 40.8 34.1
10 1,000 5,000 5836 4,277 3,585 9.9 57.7 42.3 35.4
11 1,100 5,500 6,407 4,674 3,934 10.9 63.7 46.6 39.2
12 1,200 6,000 6947 5104 4,271 12.2 71.0 52.4 44.0
13 1,300 6,500 7,549 5551 4,627 13.3 76.9 56.7 47.5
14 1,400 7,000 8,151 5994 4979 14.5 84.7 62.6 51.8
15 1,500 7,500 8,713 6,433 5,354 16.2 94.2 69.4 57.1
16 1,600 8,000 9,308 6,817 5,689 16.5 95.8 70.1 58.5
17 1,700 8500 9912 7,234 6,050 17.6 102.4 75.6 63.0
18 1,800 9,000 10,488 7,696 6,445 18.1 106.1 78.1 65.2
19 1,900 9,500 11,059 8,146 6,787 19.9 116.0 84.6 70.5

20 2,000 10,000 11,632 8,531 7,104 21.8 126.9 93.5 78.1

21 2,100 10,500 12,188 8,905 7,445 222 128.8 94.4 79.0

22 2,200 11,000 12,834 9,363 7,801 23.3 136.3 99.3 82.5

23 2,300 11,500 13,382 9,832 8,208 24.4 141.8 104.4 87.1
24 2400 12,000 13,944 10,218 8,508 26.2 152.4 110.9 92.3
25 2,500 12,500 14,532 10,664 8,816 26.7 155.2 114.0 94.1
26 2,600 13,000 15,09 11,174 9,357 27.7 160.5 118.8 99.3
27 2,700 13,500 15,734 11,550 9,689 29.7 173.2 127.3 106.7
28 2,800 14,000 16,266 12,017 9,991 29.0 168.6 124.0 103.2
29 2900 14,500 16,827 12,358 10,340 31.2 181.4 133.2 110.7
30 3,000 15,000 17,449 12,750 10,556 31.2 182.0 132.6 110.2
31 3,100 15,500 17,881 13,253 10,959 32.5 187.4 138.9 115.1
32 3200 16,000 18,643 13,666 11,438 32.8 190.9 139.9 116.8
33 3,300 16,500 19,232 14,205 11,853 35.0 203.8 150.3 125.5
34 3,400 17,000 19,823 14,647 12,284 36.5 213.1 157.6 132.1
35 3,500 17,500 20,286 14,879 12,370 36.7 212.2 155.8 129.4

A.1 Evaluation of Inter-Task Communication Design | 219
Table A.1: Results of the global buffer size for EMS models.
M D A By By Bay Gu(kB) Gup(kB) Guppg(kB) Gepyu(kB)
36 3,600 18,000 20,911 15,306 12,769 37.8 219.7 160.9 134.4
37 3,700 18,500 21,419 15,752 13,094 38.5 2234 163.9 135.9
38 3,800 19,000 22,006 16,257 13,478 39.9 230.7 170.1 141.6
39 3,900 19,500 22,707 16,667 13,930 41.1 239.0 175.9 146.9
40 4,000 20,000 23,301 17,161 14,290 42.1 2449 180.1 150.0
41 4,100 20,500 23,875 17,438 14,523 43.1 250.5 183.2 152.1
42 4,200 21,000 24,427 17,879 14,951 44.0 255.7 187.1 156.2
43 4,300 21,500 25,017 18,353 15,306 44.8 260.6 190.5 158.5
44 4,400 22,000 25552 18,827 15,563 454 263.1 194.1 160.2
45 4,500 22,500 26,174 19,240 16,026 46.9 273.3 201.7 167.9
46 4,600 23,000 26,748 19,612 16,347 48.1 279.6 205.1 170.9
47 4,700 23,500 27,324 20,024 16,717 49.1 285.5 209.7 175.1
48 4,800 24,000 27,937 20,409 17,069 49.9 290.5 2121 178.0
49 4900 24,500 28,493 20,890 17,406 51.5 299.3 218.4 182.1
50 5,000 25,000 29,061 21,328 17,764 51.7 300.2 220.4 183.8
Table A.2: Results of the global buffer size for Chassis models.
M D A Bup Bstpg Bapt Gup(kB) Gpip(kB) Gappg(kB) Gippi(KB)
1 100 500 583 389 313 1.1 6.5 4.2 34
2 200 1,000 1,162 757 599 2.0 11.9 7.7 6.2
3 300 1,500 1,738 1,140 892 34 194 12.8 10.0
4 400 2,000 2311 1492 1,176 4.0 234 15.2 11.8
5 500 2,500 2910 1,918 1,501 5.7 33.0 21.8 17.0
6 600 3,000 3485 2,288 1,811 6.3 36.6 241 19.0
7 700 3500 4,067 2673 2,097 7.0 40.3 26.7 20.9
8§ 800 4000 4,656 3,040 2,367 8.1 47.3 31.2 24.5
9 900 4,500 5239 3,448 2,720 9.6 55.9 36.8 28.9
10 1,000 5,000 5,842 3,829 3,017 10.6 62.0 40.5 31.8
11 1,100 5,500 6,368 4,177 3,291 11.3 65.5 43.3 34.3

220 | Appendix
Table A.2: Results of the global buffer size for Chassis models.

M D A Bu Buy By Gu(kB) Gup(kB) Guype(kB) Gupp(kB)
12 1,200 6,000 6,998 4,617 3,643 12.8 74.8 49.5 39.2
13 1,300 6,500 7,553 4,981 3,932 14.0 81.4 54.2 43.0
14 1,400 7,000 8,156 5360 4,212 14.7 85.5 56.0 44.1
15 1,500 7,500 8,708 5736 4,530 15.9 92.1 60.4 48.0
16 1,600 8,000 9294 6,139 4,824 16.9 98.5 65.4 51.5
17 1,700 8500 9,922 6,567 5,209 17.5 102.4 67.8 53.8
18 1,800 9,000 10,494 6,904 5,460 19.4 112.7 73.8 58.4
19 1,900 9,500 11,060 7,255 5,688 19.7 114.9 75.7 59.5
20 2,000 10,000 11,628 7,681 6,103 20.4 118.4 78.2 62.0
21 2,00 10,500 12,213 8,006 6,270 229 133.4 87.6 68.8
22 2200 11,000 12,785 8,481 6,725 22.7 131.6 87.3 69.2
23 2,300 11,500 13,366 8,882 7,077 24.6 142.6 94.9 75.8
24 2,400 12,000 13957 9,143 7,220 24.3 140.6 92.4 73.1
25 2,500 12,500 14,555 9,537 7,522 254 147.9 96.5 76.0
26 2,600 13,000 15119 9928 7,846 26.8 156.5 1033 815
27 2,700 13,500 15,678 10,369 8,208 28.6 165.7 110.0 872
28 2,800 14,000 16,240 10,725 8,484 29.7 172.2 113.4 895
29 2900 14,500 16,897 11,154 8,849 30.3 176.7 116.3 921
30 3,000 15,000 17,482 11,481 9,055 30.5 177.8 116.3 91.6
31 3,100 15,500 18,059 11,891 9,405 329 191.7 126.8 100.5
32 3,200 16,000 18,637 12,238 9,674 33.7 196.3 1293 1024
33 3,300 16,500 19,228 12,669 10,031 34.7 201.9 1324 1048
34 3400 17,000 19,725 12,959 10,239 34.7 202.1 132.8 104.7
35 3,500 17,500 20,363 13,378 10,578 37.1 2155 1412 1115
36 3,600 18,000 20970 13,849 10962 38.0 220.9 1457 115.0
37 3,700 18,500 21,501 14,205 11,257 39.1 227.3 149.8 11838
38 3,800 19,000 22,100 14,603 11,559 40.2 233.2 153.9 121.8
39 3900 19,500 22,632 14,853 11,679 415 240.8 1583 1242
40 4,000 20,000 23,284 15327 12,075 40.5 236.5 1554 1221

A.1 Evaluation of Inter-Task Communication Design | 221
Table A.2: Results of the global buffer size for Chassis models.
M D A Bu Bay Bay Gu(kB) Gup(kB) Gupg(kB) Geyu(kB)
41 4,100 20,500 23,890 15,789 12,494 43.8 255.4 169.7 135.1
42 4200 21,000 24,467 15998 12,618 43.9 256.0 167.5 132.0
43 4,300 21,500 25,008 16,406 12937 44.2 257.7 169.1 133.4
44 4,400 22,000 25,605 16,862 13,344 453 264.0 1744 1388
45 4,500 22,500 26,189 17,240 13,650 47.0 273.5 179.9 1426
46 4,600 23,000 26,785 17,613 13963 48.1 280.2 185.0 1474
47 4,700 23,500 27,307 17,954 14,184 487 282.7 186.6 1483
48 4,800 24,000 27,956 18,440 14,558 49.3 287.5 189.7 1498
49 4900 24,500 28,533 18,695 14,731 51.9 301.9 1972 155.0
50 5,000 25,000 29,106 19,191 15,143 52.0 302.3 198.7 1565
Table A.3: Results of the local buffer size for EMS models.

M D A Lyy L Lyt Spip(kB) Seppg(kB) Seppi(kB)

1 100 500 0 459 656 0 0.5 2.7

2 200 1,000 O 918 1,308 0 0.9 5.3

3 300 1,500 0 1,366 1,958 0 1.4 7.5

4 400 2000 0 1,841 2621 0 1.8 9.9

5 500 2500 0 2259 3238 0 2.3 11.5

6 600 3,000 0 2714 3,888 0 2.7 14.3

7 700 3500 0 3155 4,515 0 3.2 17.4

8§ 800 4000 0 3619 5175 0 3.6 20.8

9 900 4500 0 4106 5853 0 4.1 22.8

10 1,000 5,000 0 4570 6,528 0 4.6 24.0

1 1,100 5500 0 5030 7,179 0 5.0 26.4

12 1,200 6,000 0 5449 7,779 0 5.4 29.3

13 1,300 6,500 0 5935 8,477 0 5.9 319

14 1,400 7,000 0 6394 9,147 0 6.4 35.1

15 1,500 7500 0 6811 9,737 0 6.8 38.4

16 1,600 8000 0 7306 10442 0 7.3 39.6

222 |

Table A.3: Results of the local buffer size for EMS models.

Appendix

M D A Lu Lapg Lap Spip(kB) Seppg(kB) Sep(kB)
17 1,700 8500 0 7,803 11,138 0 78 423
18 1,800 9,000 0 8244 11770 0 82 438
19 1,900 9500 0 8625 12341 0 86 475
20 2000 10000 0 9108 13014 0 91 518
21 2100 10500 0 9542 13634 0 95 527
22 2200 11,000 0 10052 14349 0 101 557
23 2300 11500 0 10477 14964 0 105 581
24 2400 12000 O 10878 15567 0 109 621
25 2500 12500 0 11,343 16217 0 113 633
26 2600 13000 0 11,792 16866 0 118 657
27 2700 13500 0 12,336 17,606 0 123 701
28 2,800 14,000 O 12728 18207 0 127 694
29 2900 14500 0 13,194 18848 0 132 742
30 3000 15000 0 13,671 19535 0 137 748
31 3100 15500 0 13,791 19,802 0 138 767
32 3200 16000 0 14674 20925 0 147 790
33 3300 16500 0 15003 21444 0 150 832
34 3400 17,000 0 15533 22190 O 155 871
35 3500 17500 0 15897 22713 0 159 871
36 3600 18000 0 16383 23427 0 164 903
37 3700 18500 0 16674 23,883 0 167 919
38 3800 19000 0 17,129 24524 0 171 945
39 3900 19500 0 17,784 25406 0 178 980
40 4000 20000 O 18238 26039 0 182 100.1
41 4100 20500 0 18733 26760 0 187 103.0
42 4200 21,000 0 19,130 27342 0 191 1050
43 4300 21500 0 19,554 27,965 0 196 107.0
44 4400 22000 0 19915 28504 0 199 1085
45 4500 22500 0 20562 29350 0 206 1124

A.1 Evaluation of Inter-Task Communication Design

Table A.3: Results of the local buffer size for EMS models.

M D A Lptp Lapg Lsopt Sptp(KB) Seppg(kB) Sgppi(kB)
46 4,600 23,000 0 20925 29,897 0 20.9 114.8
47 4,700 23,500 0 21,387 30,586 0 214 117.5
48 4,800 24,000 0 21,981 31,349 0 22.0 119.2
49 4900 24500 0 22,306 31,888 0 223 122.8
50 5,000 25,000 0 22,749 32,510 0 22.7 123.9
Table A.4: Results of the local buffer size for Chassis models.
M D A Lptp Lapg Lsopt Spip(KB) Seppg(kB) Sgppi(kB)
1 100 500 0 454 648 0 0.5 2.6
2 200 1,000 O 911 1,299 0 0.9 4.9
3 300 1,500 0 1,365 1,955 0 14 8.0
4 400 2000 0 1,815 2,591 0 1.8 9.8
5 500 2500 0 2,283 3,264 0 23 13.5
6 600 3000 0 2708 3,873 0 2.7 15.0
7 700 3500 0 3,184 4,558 0 3.2 16.8
8 800 4000 0 3,667 5230 0 3.7 19.5
9 900 4500 0 4129 589 0 4.1 23.0
10 1,000 5,000 0 459 6,551 0 4.6 254
11 1,100 5500 0 4976 7,123 0 5.0 27.0
12 1,200 6,000 0 5486 7,843 0 5.5 30.7
13 1,300 6,500 0 5943 8,478 0 5.9 33.2
14 1,400 7,000 0 6373 9115 0 6.4 35.0
15 1,500 7500 0 6827 9,745 0 6.8 37.7
16 1,600 8000 0 7276 10403 0 7.3 40.3
17 1,700 8500 0 7,765 11,091 0 7.8 41.9
18 1,800 9,000 0 8240 11,753 0 8.2 46.0
19 1900 9500 0 8,694 12,408 0 8.7 47.3
20 2,000 10,000 0 9,127 13,035 0 9.1 49.0
21 2,00 10,500 O 9,613 13,729 0 9.6 54.5

| 223

224 |

Appendix

Table A.4: Results of the local buffer size for Chassis models.

M D A Lu Lapg Lap Spip(kB) Seppg(kB) Sep(kB)
22 2200 11,000 0 10037 14324 0 100 541
23 2300 11,500 0 10517 15003 0 105 582
24 2400 12000 0 10989 15682 0 110 584
25 2500 12500 0 11432 16307 0 114 609
26 2600 13,000 0 11,853 16933 0 119 645
27 2700 13500 0 12301 17573 0 123 682
28 2800 14000 0 12721 18172 0 127 706
29 2900 14500 0 13240 18912 0 132 724
30 3000 15000 0 13715 19587 0 137 733
31 3100 15500 0 14233 20290 0 142 785
32 3200 16000 0 14599 20,852 0 146 803
33 3300 16500 0 15111 21565 0 151 828
34 3400 17000 0 15468 22,091 0 155 834
35 3500 17500 0 16035 22,857 0 160 883
36 3600 18000 0 16441 23486 0 164 908
37 3700 18500 0 16877 24090 0 169 93.0
38 3800 19000 0 17,308 24748 0 173 959
39 3900 19500 0 17,694 25313 0 177 9838
40 4000 20000 O 18286 26112 0 183 979
41 4100 20500 0 18789 26818 0 188 1047
42 4200 21,000 0 19,168 27371 0 192 1051
43 4300 21500 0 19,654 28041 0 197 106.1
44 4400 22000 0 20,083 28669 0 201 1086
45 4500 22500 0 20526 29329 0 205 1127
46 4600 23000 O 21,040 30030 0 210 1148
47 4700 23500 0 21,458 30661 0 215 1166
48 4800 24000 0 21,891 31290 0 219 1185
49 4900 24500 0 22420 32,007 0 24 1242
50 5000 25000 0 22862 32621 0 29 1240

A.1 Evaluation of Inter-Task Communication Design | 225

A.1.0.2 Overhead Evaluation

The attributes of the tables listed in this section are described as: M — the model
identification number, D — the amount of data elements, A — the amount of data
accesses, SA — the amount of spin-lock accesses, Ogppe(7) — buffering utilization of
SBP-G, Ogpp1(%) — buffering utilization of SBP-L, Optp—wsp(%) — buffering utilization of
PTP considering spin-locks, Optp—wosp(70) — buffering utilization of PTP without spin-
locks, MAT(ms) — the total memory accessing time, M AT;,;;(ms) — the total memory
accessing time to initialize buffers at the start of the hyper-period, MAT;;,(ms) —
the total memory accessing time to initialize buffer indexes at the start of tasks,
MAT],.;(ms) — the total memory accessing time to fill and flush local buffers in SBP-L,

NE Tsups “8%(ms) — the total Net Execution Time for using spin-locks, and NE Tf‘;fiting (ms) —
the total Net Execution Time for waiting for blocked spin-locks.

Table A.5: Results of the buffering overhead of PTP-WSP in EMS models.

M D A SA Optp-wsp(%) MAT(ms) NETH(ms) NETS""8(ms)
1 100 500 936 2.67 0.01 0.09 0.000000
2 200 1,000 1,89 5.11 0.03 0.19 0.000035
3 300 1500 2,808 7.94 0.04 0.28 0.000025
4 400 2,000 3,824 10.31 0.05 0.38 0.000130
5 500 2500 4,734 13.69 0.06 0.47 0.000000
6 600 3000 5648 15.22 0.07 0.56 0.000065
7 700 3500 6,642 19.48 0.09 0.66 0.000050
8 800 4,000 7,478 20.70 0.11 0.75 0.000110
9 900 4500 8504 24.45 0.12 0.85 0.000125
10 1,000 5000 9,540 28.38 0.13 0.95 0.000045
11 1,100 5500 10,404 31.00 0.14 1.04 0.000145
12 1200 6,000 11,304 32.78 0.15 1.13 0.000015
13 1,300 6,500 12,314 3591 0.16 1.23 0.000040
14 1,400 7,000 13,338 37.01 0.18 1.33 0.000040
15 1,500 7,500 14,180 39.10 0.20 1.42 0.000040
16 1,600 8,000 15,162 4541 0.21 1.52 0.000045
17 1,700 8500 16,192 47.74 0.22 1.62 0.000015
18 1,800 9,000 17,090 50.75 0.23 1.71 0.000105
19 1,900 9,500 17,994 51.32 0.25 1.80 0.000105

226 | Appendix
Table A.5: Results of the buffering overhead of PTP-WSP in EMS models.
M D A SA Optp-uwsp(%) MAT(ms) NET(ms) NETS""8(ms)
20 2,000 10,000 18,868 57.16 0.27 1.89 0.000175
21 2,100 10,500 19,842 59.36 0.28 1.98 0.000060
22 2,200 11,000 20,984 62.37 0.29 2.10 0.000125
23 2,300 11,500 21,788 62.37 0.31 2.18 0.000195
24 2,400 12,000 22,692 62.87 0.32 2.27 0.000080
25 2,500 12,500 23,568 65.12 0.33 2.36 0.000175
26 2,600 13,000 24,456 66.32 0.34 2.45 0.000200
27 2,700 13,500 25,730 78.28 0.37 2.57 0.000090
28 2,800 14,000 26,420 76.26 0.36 2.64 0.000165
29 2900 14,500 27,454 76.89 0.38 2.75 0.000105
30 3,000 15,000 28,342 82.10 0.39 2.83 0.000045
31 3,100 15,500 28,692 77.65 0.40 2.87 0.000055
32 3,200 16,000 30,482 90.18 041 3.05 0.000020
33 3,300 16,500 31,316 86.92 0.44 3.13 0.000045
34 3,400 17,000 32,332 97.05 0.45 3.23 0.000205
35 3,500 17,500 33,090 94.40 0.45 3.31 0.000335
36 3,600 18,000 33,976 102.73 0.47 3.40 0.000250
37 3,700 18,500 34,740 96.61 0.48 3.47 0.000075
38 3,800 19,000 35,676 95.44 0.49 3.57 0.000060
39 3,900 19,500 36,984 111.41 0.52 3.70 0.000085
40 4,000 20,000 37,860 105.98 0.53 3.79 0.000135
41 4,100 20,500 38,950 116.71 0.54 3.90 0.000170
42 4,200 21,000 39,786 119.92 0.56 3.98 0.000175
43 4,300 21,500 40,714 118.17 0.56 4.07 0.000185
44 4400 22,000 41478 110.56 0.56 4.15 0.000125
45 4,500 22,500 42,602 123.13 0.59 4.26 0.000150
46 4,600 23,000 43,398 124.82 0.60 4.34 0.000095
47 4,700 23,500 44,516 133.97 0.62 4.45 0.000120
48 4,800 24,000 45,564 138.63 0.63 4.56 0.000130

A.1 Evaluation of Inter-Task Communication Design | 227

Table A.5: Results of the buffering overhead of PTP-WSP in EMS models.

M D A SA Optp-wsp(%) MAT(ms) NETH®(ms) NETS""8(ms)

49 4900 24,500 46,252 134.55 0.65 4.63 0.000085

50 5,000 25,000 47,244 137.22 0.65 4.72 0.000125

Table A.6: Results of the buffering overhead of PTP-WOSP in EMS models.

M D A Opip-wosp(%) MAT(ms)
1 100 500 0.51 0.02
2200 1,000 0.91 0.04
3 300 1,500 147 0.07
4400 2,000 1.97 0.09
5 500 2,500 2.69 0.11
6 600 3,000 2.90 0.13
7 700 3,500 440 0.18
8 800 4,000 445 0.20
9 900 4,500 5.12 0.22
10 1,000 5,000 6.16 0.26
11 1,100 5,500 6.68 0.26
12 1,200 6,000 6.42 0.27
13 1,300 6,500 7.62 0.30
14 1,400 7,000 7.18 0.31
15 1,500 7,500 8.85 0.36
16 1,600 8,000 9.52 0.42
17 1,700 8,500 9.53 0.41
18 1,800 9,000 11.08 0.46
19 1,900 9,500 11.28 0.49
20 2,000 10,000 12.48 0.55
21 2,100 10,500 12.89 0.60
22 2,200 11,000 14.82 0.65
23 2,300 11,500 13.96 0.61
24 2,400 12,000 14.71 0.63

228 |

Table A.6: Results of the buffering overhead of PTP-WOSP in EMS models.

M D A Oppwosp(%) MAT(ms)
25 2500 12,500 16.25 0.71
26 2,600 13,000 15.33 0.67
27 2,700 13,500 19.46 0.84
28 2,800 14,000 17.28 0.70
29 2,900 14,500 19.32 0.88
30 3,000 15,000 19.59 0.77
31 3,00 15,500 19.26 0.81
32 3,200 16,000 20.66 0.86
33 3,300 16,500 20.62 0.95
34 3400 17,000 22.70 0.94
35 3,500 17,500 22.79 1.00
36 3,600 18,000 25.49 1.08
37 3,700 18,500 23.35 1.05
38 3,800 19,000 25.15 1.06
39 3,900 19,500 27.48 1.22
40 4,000 20,000 28.16 1.22
41 4,100 20,500 27.20 1.16
42 4200 21,000 30.83 1.29
43 4300 21,500 28.05 1.18
44 4400 22,000 25.63 1.19
45 4500 22,500 29.71 1.29
46 4,600 23,000 30.79 1.29
47 4,700 23,500 33.15 1.42
48 4,800 24,000 35.94 1.51
49 4900 24,500 31.83 141
50 5,000 25,000 32.01 1.52

Appendix

A.1 Evaluation of Inter-Task Communication Design

Table A.7: Results of the buffering overhead of SBP-G in EMS models.

M D A Ogpe(%) MAT;ge(ms) MAT;(ms)
1 100 500 0.08 0.003 0.003
2200 1,000 015 0.006 0.006
3 300 1500 023 0.009 0.009
4 400 2,000 030 0.012 0.013
5 500 2500 @ 0.39 0.015 0.015
6 600 3,000 045 0.018 0.018
7 700 3500 055 0.021 0.022
8 800 4000 0.60 0.024 0.025
9 900 4500 0.71 0.027 0.027
10 1,000 5000 0.81 0.030 0.029
11 1,100 5500 0.90 0.034 0.033
12 1,200 6000 0.94 0.036 0.037
13 1,300 6500 1.04 0.040 0.039
14 1400 7,000 1.06 0.043 0.043
15 1,500 7,500 1.12 0.045 0.047
16 1,600 8000 131 0.049 0.047
17 1,700 8500 1.38 0.052 0.051
18 1,800 9,000 1.46 0.055 0.053
19 1,900 9500 148 0.058 0.058
20 2,000 10,000 1.64 0.061 0.062
21 2,100 10500 1.71 0.064 0.064
22 2200 11,000 178 0.067 0.067
23 2300 11,500 1.79 0.070 0.071
24 2400 12,000 181 0.073 0.076
25 2500 12,500 1.88 0.076 0.078
26 2,600 13,000 192 0.079 0.081
27 2,700 13500 2.23 0.082 0.084
28 2,800 14,000 2.19 0.085 0.084
29 2900 14500 221 0.088 0.091

| 229

230 |

Table A.7: Results of the buffering overhead of SBP-G in EMS models.

M D A Ogpe(%) MAT;ge(ms) MAT;(ms)
30 3,000 15000 2.36 0.091 0.090
31 3,00 15500 2.25 0.092 0.097
32 3200 16,000 2.60 0.098 0.096
33 3300 16500 2.50 0.100 0.104
34 3400 17,000 2.77 0.104 0.104
35 3,500 17,500 2.72 0.106 0.107
36 3,600 18,000 2.95 0.109 0.109
37 3700 18500 2.78 0.111 0.111
38 35800 19,000 2.76 0.114 0.118
39 3900 19,500 3.18 0.119 0.119
40 4,000 20,000 3.06 0.122 0.123
41 4100 20,500 334 0.125 0.124
42 4200 21,000 342 0.128 0.128
43 4300 21,500 3.38 0.130 0.131
44 4400 22,000 3.20 0.133 0.135
45 4500 22,500 3.54 0.137 0.137
46 4,600 23,000 3.60 0.140 0.140
47 4700 23500 3.83 0.143 0.141
48 4,800 24,000 3.97 0.147 0.143
49 4900 24500 3.86 0.149 0.149
50 5000 25000 3.93 0.152 0.151

Table A.8: Results of the buffering overhead of SBP-L in EMS models.

Appendix

M D A Ogpi(%) MATig(ms) MATi(ms) MAT]pcq(ms)
1 100 500 0.19 0.003 0.003 0.005
2 200 1,000 0.37 0.006 0.006 0.010
3 300 1,500 0.58 0.009 0.009 0.016
4 400 2,000 0.77 0.012 0.012 0.021
5 500 2,500 1.03 0.015 0.013 0.026

A.1 Evaluation of Inter-Task Communication Design

Table A.8: Results of the buffering overhead of SBP-L in EMS models.

M D A Ogppi(%) MATg(ms) MATy(ms) MATgeq(ms)
6 600 3,000 1.08 0.018 0.018 0.029
7 700 3,500 1.50 0.021 0.020 0.039
8 800 4,000 1.58 0.024 0.024 0.043
9 900 4,500 1.96 0.027 0.026 0.053
10 1,000 5,000 2.26 0.030 0.027 0.056
11 1,100 5,500 2.26 0.034 0.030 0.060
12 1,200 6,000 2.49 0.036 0.035 0.063
13 1,300 6,500 2.73 0.040 0.037 0.072
14 1,400 7,000 2.80 0.043 0.041 0.076
15 1,500 7,500 3.11 0.045 0.045 0.086
16 1,600 8,000 3.66 0.049 0.043 0.095
17 1,700 8,500 3.83 0.052 0.047 0.098
18 1,800 9,000 4.12 0.055 0.050 0.109
19 1,900 9,500 4.16 0.058 0.054 0.110
20 2,000 10,000 4.78 0.061 0.057 0.128
21 2,100 10,500 4.72 0.064 0.059 0.120
22 2,200 11,000 4.80 0.067 0.062 0.124
23 2,300 11,500 493 0.070 0.067 0.132
24 2,400 12,000 493 0.073 0.072 0.137
25 2,500 12,500 5.42 0.076 0.074 0.152
26 2,600 13,000 5.25 0.079 0.077 0.145
27 2,700 13,500 6.70 0.082 0.077 0.188
28 2,800 14,000 6.38 0.085 0.078 0.166
29 2,900 14,500 6.23 0.088 0.086 0.166
30 3,000 15,000 6.51 0.091 0.084 0.174
31 3,100 15,500 6.33 0.092 0.092 0.174
32 3,200 16,000 711 0.098 0.090 0.189
33 3,300 16,500 7.06 0.100 0.099 0.197
34 3400 17,000 8.07 0.104 0.096 0.205

| 231

232 | Appendix
Table A.8: Results of the buffering overhead of SBP-L in EMS models.

M D A Ogppi(%) MATig(ms) MAT,(ms) MATpcq(ms)

35 3,500 17,500 7.59 0.106 0.100 0.202

36 3,600 18,000 8.70 0.109 0.100 0.228

37 3,700 18500 7.78 0.111 0.105 0.214

38 3,800 19,000 7.86 0.114 0.114 0.218

39 3,900 19,500 9.53 0.119 0.111 0.247

40 4,000 20,000 9.06 0.122 0.117 0.242

41 4,100 20,500 9.80 0.125 0.114 0.261

42 4,200 21,000 10.72 0.128 0.118 0.301

43 4,300 21,500 10.15 0.130 0.122 0.275

44 4,400 22,000 9.16 0.133 0.129 0.259

45 4,500 22,500 10.55 0.137 0.128 0.278

46 4,600 23,000 10.79 0.140 0.131 0.295

47 4,700 23,500 11.67 0.143 0.130 0.314

48 4,800 24,000 12.53 0.147 0.132 0.336

49 4900 24,500 11.46 0.149 0.139 0.309

50 5,000 25,000 11.74 0.152 0.141 0.321

Table A.9: Results of the buffering overhead of PTP-WSP in Chassis models.
M D A SA Optpuwsp(%) MAT(ms) NETH®(ms) NETS""8(ms)
1 100 500 936 3.57 0.01 0.09 0.000000
2 200 1,000 1,89 6.95 0.03 0.19 0.000035
3 300 1,500 2,808 10.64 0.04 0.28 0.000025
4 400 2,000 3,824 14.25 0.05 0.38 0.000130
5 500 2500 4,734 18.15 0.06 0.47 0.000000
6 600 3,000 5,648 20.88 0.07 0.56 0.000065
7 700 3500 6,642 24.89 0.09 0.66 0.000050
8 800 4,000 7478 28.32 0.11 0.75 0.000110
9 900 4500 8,504 31.85 0.12 0.85 0.000125
10 1,000 5,000 9,540 35.09 0.13 0.95 0.000045

A.1 Evaluation of Inter-Task Communication Design

Table A.9: Results of the buffering overhead of PTP-WSP in Chassis models.

| 233

M D A SA Optp-wsp(%) MAT(ms) NETH®(ms) NETS""8(ms)
11 1,100 5500 10,404 38.95 0.14 1.04 0.000145
12 1,200 6,000 11,304 4347 0.15 1.13 0.000015
13 1,300 6500 12314 46.99 0.16 1.23 0.000040
14 1,400 7,000 13338 4892 0.18 1.33 0.000040
15 1,500 7,500 14,180 53.80 0.20 142 0.000040
16 1,600 8000 15162 56.98 0.21 1.52 0.000045
17 1,700 8500 16,192 60.39 0.22 1.62 0.000015
18 1,800 9,000 17,090 65.16 0.23 1.71 0.000105
19 1,900 9,500 17,994 66.80 0.25 1.80 0.000105
20 2,000 10,000 18,868 71.36 0.27 1.89 0.000175
21 2,100 10,500 19,842 74.70 0.28 1.98 0.000060
22 2200 11,000 20,984 77.60 0.29 2.10 0.000125
23 2,300 11,500 21,788 83.65 031 2.18 0.000195
24 2,400 12,000 22,692 83.94 0.32 2.27 0.000080
25 2,500 12,500 23,568 88.70 0.33 2.36 0.000175
26 2,600 13,000 24456 9275 0.34 2.45 0.000200
27 2,700 13,500 25,730 95.03 0.37 2.57 0.000090
28 2,800 14,000 26,420 99.01 0.36 2.64 0.000165
29 2900 14,500 27,454 104.95 0.38 2.75 0.000105
30 3,000 15000 28342 105.64 0.39 2.83 0.000045
31 3,00 15500 28,692 111.80 0.40 2.87 0.000055
32 3200 16,000 30482 114.00 0.41 3.05 0.000020
33 3300 16500 31,316 11835 0.44 3.13 0.000045
34 3400 17,000 32,332 12047 0.45 3.23 0.000205
35 3,500 17,500 33,090 124.06 0.45 331 0.000335
36 3,600 18,000 33976 129.43 0.47 3.40 0.000250
37 3,700 18500 34740 133.04 0.48 3.47 0.000075
38 3,800 19,000 35676 13591 0.49 3.57 0.000060
39 3900 19,500 36,984 13539 0.52 3.70 0.000085

234 | Appendix
Table A.9: Results of the buffering overhead of PTP-WSP in Chassis models.
M D A SA Optp-uwsp(%) MAT(ms) NET(ms) NETS""8(ms)
40 4,000 20,000 37,860 141.91 0.53 3.79 0.000135
41 4,100 20,500 38,950 148.24 0.54 3.90 0.000170
42 4200 21,000 39,786 148.97 0.56 3.98 0.000175
43 4,300 21,500 40,714 152.01 0.56 4.07 0.000185
44 4,400 22,000 41,478 158.59 0.56 4.15 0.000125
45 4,500 22,500 42,602 160.50 0.59 4.26 0.000150
46 4,600 23,000 43,398 165.44 0.60 4.34 0.000095
47 4,700 23,500 44,516 169.48 0.62 4.45 0.000120
48 4,800 24,000 45,564 170.09 0.63 4.56 0.000130
49 4900 24,500 46,252 176.18 0.65 4.63 0.000085
50 5,000 25,000 47,244 179.11 0.65 4.72 0.000125

Table A.10: Results of the buffering overhead of PTP-WOSP in Chassis models.

M D A Opipwosp (%) MAT (ms)
1 100 500 0.57 0.02
2200 1,000 1.12 0.03
3 300 1,500 2.19 0.07
4 400 2,000 2.38 0.08
5 500 2,500 3.96 0.12
6 600 3,000 3.74 0.12
7 700 3,500 4.46 0.14
8 800 4,000 5.74 0.20
9 900 4,500 5.87 0.18
10 1,000 5,000 7.22 0.24
11 1,100 5500 7.86 0.25
121,200 6,000 8.74 0.28
13 1,300 6,500 9.64 0.31
14 1,400 7,000 8.71 0.30
15 1,500 7,500 10.71 0.33

A.1 Evaluation of Inter-Task Communication Design

Table A.10: Results of the buffering overhead of PTP-WOSP in Chassis models.

M D A Optpwosp(%) MAT(ms)
16 1,600 8,000 11.88 0.37
17 1,700 8,500 12.16 0.39
18 1,800 9,000 14.83 0.48
19 1,900 9,500 13.20 0.42
20 2,000 10,000 14.87 0.50
21 2,100 10,500 16.53 0.55
22 2,200 11,000 16.11 0.52
23 2,300 11,500 18.08 0.55
24 2,400 12,000 17.87 0.59
25 2,500 12,500 17.29 0.62
26 2,600 13,000 21.38 0.71
27 2,700 13,500 19.05 0.63
28 2,800 14,000 22.53 0.73
29 2,900 14,500 23.89 0.79
30 3,000 15,000 2351 0.72
31 3,100 15,500 26.20 0.83
32 3,200 16,000 26.69 0.83
33 3300 16,500 27.24 0.85
34 3400 17,000 28.04 0.94
35 3,500 17,500 27.98 0.90
36 3,600 18,000 30.05 0.99
37 3,700 18,500 30.66 1.02
38 3,800 19,000 32.86 1.06
39 3,900 19,500 30.77 1.08
40 4,000 20,000 33.62 1.16
41 4,100 20,500 35.79 1.13
42 4200 21,000 34.15 1.15
43 4,300 21,500 31.81 1.07
44 4400 22,000 35.30 1.25

| 235

236 |

Appendix

Table A.10: Results of the buffering overhead of PTP-WOSP in Chassis models.

M D A Oppwosp(%) MAT(ms)
45 4500 22,500 34.82 1.22
46 4,600 23,000 38.73 1.19
47 4700 23,500 37.76 1.28
48 4,800 24,000 39.76 1.19
49 4900 24,500 42.15 1.38
50 5,000 25,000 42.50 1.39

Table A.11: Results of the buffering overhead of SBP-G in Chassis models.
M D A Ogsppg (%) MAT4 (ms) MAT;y; (ms)
1 100 500 0.12 0.003 0.003
2 200 1,000 0.24 0.006 0.006
3 300 1,500 0.37 0.009 0.009
4 400 2,000 0.49 0.012 0.012
5 500 2,500 0.63 0.015 0.016
6 600 3,000 0.72 0.018 0.018
7 700 3,500 0.85 0.021 0.021
8 800 4,000 0.97 0.024 0.023
9 900 4,500 1.10 0.028 0.027
10 1,000 5,000 1.22 0.031 0.030
11 1,100 5,500 1.34 0.033 0.033
12 1,200 6,000 1.48 0.037 0.037
13 1,300 6,500 1.61 0.040 0.040
14 1,400 7,000 1.68 0.043 0.042
15 1,500 7,500 1.85 0.046 0.046
16 1,600 8,000 1.96 0.049 0.048
17 1,700 8,500 2.07 0.052 0.051
18 1,800 9,000 2.23 0.055 0.056
19 1,900 9,500 2.30 0.058 0.056
20 2,000 10,000 244 0.061 0.059

A.1 Evaluation of Inter-Task Communication Design

Table A.11: Results of the buffering overhead of SBP-G in Chassis models.

M D A Ogpg(%) MATig(ms) MAT;y(ms)
21 2,100 10500 2.58 0.064 0.065
22 2200 11,000 2.68 0.067 0.066
23 2300 11,500 2.87 0.070 0.071
24 2,400 12,000 2.89 0.073 0.071
25 2500 12,500 3.03 0.076 0.073
26 2,600 13,000 3.17 0.079 0.079
27 2,700 13,500 3.28 0.082 0.083
28 2,800 14,000 3.42 0.085 0.085
29 2900 14,500 3.59 0.088 0.088
30 3,000 15000 3.63 0.091 0.090
31 3,00 15500 3.83 0.095 0.094
32 3200 16,000 3.92 0.097 0.099
33 3300 16500 4.07 0.101 0.099
34 3400 17,000 4.13 0.103 0.102
35 3500 17,500 4.28 0.107 0.106
36 3,600 18,000 4.43 0.110 0.112
37 3,700 18500 4.56 0.113 0.112
38 3,800 19,000 4.66 0.115 0.116
39 3900 19,500 4.69 0.118 0.120
40 4,000 20,000 4.89 0.122 0.120
41 4,00 20,500 5.09 0.125 0.128
42 4200 21,000 5.10 0.128 0.126
43 4300 21,500 521 0.131 0.128
44 4400 22,000 543 0.134 0.132
45 4500 22,500 5.49 0.137 0.134
46 4,600 23,000 5.65 0.140 0.139
47 4700 23500 5.81 0.143 0.142
48 4,800 24,000 581 0.146 0.142
49 4900 24500 6.04 0.150 0.148

| 237

238 |

Appendix

Table A.11: Results of the buffering overhead of SBP-G in Chassis models.

M

D

A Ogypgl(%)

M ATl‘d x (ms)

MATinit (ms)

50 5,000 25,000

6.13 0.152

0.150

Table A.12: Results of the buffering overhead of SBP-L in Chassis models.

M D A Osppr (%) MATigy (ms) MAT; (ms) MATje (ms)
1 100 500 0.27 0.003 0.003 0.004
2 200 1,000 0.50 0.006 0.006 0.008
3 300 1,500 0.85 0.009 0.009 0.014
4 400 2,000 1.04 0.012 0.011 0.017
5 500 2,500 1.49 0.015 0.015 0.023
6 600 3,000 1.66 0.018 0.017 0.026
7 700 3,500 1.94 0.021 0.019 0.029
8 800 4,000 2.17 0.024 0.022 0.035
9 900 4,500 2.61 0.028 0.025 0.040
10 1,000 5,000 2.99 0.031 0.028 0.046
11 1,100 5,500 3.22 0.033 0.030 0.050
12 1,200 6,000 3.61 0.037 0.034 0.054
13 1,300 6,500 3.72 0.040 0.037 0.057
14 1,400 7,000 3.89 0.043 0.038 0.060
15 1,500 7,500 4.68 0.046 0.041 0.082
16 1,600 8,000 4.44 0.049 0.045 0.068
17 1,700 8,500 5.24 0.052 0.047 0.090
18 1,800 9,000 5.68 0.055 0.051 0.096
19 1,900 9,500 5.49 0.058 0.052 0.086
20 2,000 10,000 5.83 0.061 0.055 0.087
21 2,100 10,500 6.64 0.064 0.059 0.112
222,200 11,000 7.13 0.067 0.061 0.121
23 2,300 11,500 7.59 0.070 0.067 0.125
24 2,400 12,000 7.47 0.073 0.065 0.130
25 2,500 12,500 7.63 0.076 0.068 0.123

A.1 Evaluation of Inter-Task Communication Design

Table A.12: Results of the buffering overhead of SBP-L in Chassis models.

M D A Osppi(70) MATj(ms) MATpi(ms) MATpeq(ms)
26 2,600 13,000 8.91 0.079 0.072 0.174
27 2,700 13,500 8.60 0.082 0.076 0.139
28 2,800 14,000 8.38 0.085 0.078 0.135
29 2900 14,500 9.53 0.088 0.080 0.180
30 3,000 15,000 9.89 0.091 0.082 0.183
31 3,100 15,500 10.96 0.095 0.087 0.215
32 3,200 16,000 9.96 0.097 0.091 0.161
33 3,300 16,500 11.10 0.101 0.091 0.196
34 3,400 17,000 11.31 0.103 0.093 0.212
35 3,500 17,500 11.88 0.107 0.097 0.216
36 3,600 18,000 12.44 0.110 0.103 0.244
37 3,700 18,500 12.51 0.113 0.104 0.233
38 3,800 19,000 12.59 0.115 0.106 0.228
39 3,900 19,500 12.81 0.118 0.113 0.245
40 4,000 20,000 12.85 0.122 0.110 0.234
41 4,100 20,500 14.27 0.125 0.118 0.267
42 4,200 21,000 13.87 0.128 0.117 0.253
43 4,300 21,500 13.76 0.131 0.119 0.247
44 4400 22,000 16.01 0.134 0.121 0.323
45 4,500 22,500 14.64 0.137 0.123 0.265
46 4,600 23,000 16.55 0.140 0.128 0.332
47 4,700 23,500 16.80 0.143 0.129 0.353
48 4,800 24,000 15.32 0.146 0.132 0.285
49 4900 24,500 17.18 0.150 0.134 0.339
50 5,000 25,000 16.70 0.152 0.138 0.321

| 239

240 | Appendix
A.2 Evaluation of Scheduling Design

This section provides the detailed results of the evaluation benchmarks of Time-
Triggered Scheduling (TTS) and Fixed-Priority Scheduling (FPS) synthesis.

The attributes of the tables listed below are described as: M — the model identification
number, Uy(%) - the computation load, U;(%) - the total load,] — the number of jobs
and communication blocks, Fy(s) — the run-time of TTS synthesis to provide the first
feasible solution, Fs(s) — the run-time of FPS synthesis to provide the first feasible
solution, Oys(s) - the run-time of TTS synthesis to provide the optimal solution, Of(s)
— the run-time of FPS synthesis to provide the optimal solution, Py(s) — the number of
preemptions in the optimal solution of TTS, and Py4(s) — the number of preemptions
in the optimal solution of FPS. Values equal to “NA” for Prps and Py indicate that the
model has an infeasible schedule. In this case, Fys(s) and Frs(s) indicate the time it
takes to find that the schedule is infeasible.

Table A.13: Results for Benchmark 1 - SBP.

M Up(%) U(%)] Fyts(s) Frps(s) Onus(s) Opps(8) Pus(s) Prps(s)
30-0 30 32.14 23 0.16 0.15 0.16 0.17 0 0
30-1 30 32.11 115 1.71 1.13 0.90 1.15 0 0
30-10 30 31.60 111 1.72 1.69 1.05 1.68 2 4
30-11 30 3193 231 3.52 5.05 3.74 5.76 0 2
30-12 30 31.71 223 2.67 2.66 2.42 2.58 0 0
30-13 30 31.00 103 0.70 0.71 0.53 0.63 0 0
30-14 30 31.64 183 1.67 1.06 1.22 0.99 0 0
30-15 30 31.39 203 1.87 2.10 1.35 1.68 0 0
30-16 30 31.87 507 21.01 26.32 91.30 17.86 34 35
30-17 30 30.70 207 7.08 0.81 21.04 0.86 16 16
30-18 30 31.47 407 11.49 1.67 30.94 1.72 37 37
30-19 30 31.84 457 66.00 5.79 953.17 5.15 33 38
30-2 30 31.56 55 0.31 0.33 0.36 0.33 0 0
30-20 30 30.69 107 4.89 0.47 0.81 0.50 0 1
30-21 30 31.61 257 6.71 6.00 11.31 7.19 13 15
30-22 30 3196 557 26.62 38.45 27.13 26.22 2 3
30-23 30 3230 577 43.73 93.28 39.45 59.70 13 23
30-24 30 30.88 277 11.44 13.61 17.37 11.40 6 11

A.2 Evaluation of Scheduling Design | 241
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
30-25 30 31.00 137 7.50 1.64 2.00 1.63 0 1
30-26 30 32.05 477 15.97 25.90 16.56 22.25 2 7
30-27 30 31.28 427 13.70 22.16 67.30 12.90 33 39
30-28 30 3092 47 0.35 0.24 0.35 0.25 0 0
30-29 30 31.26 227 12.61 5.10 33.30 5.65 13 19

30-3 30 31.82 95 0.55 0.50 0.43 0.50 0 0
30-30 30 3226 527 157.65 46.07 76.32 27.98 17 37
30-31 30 31.81 522 30.70 14.13 14.05 21.14 2 3
30-32 30 31.29 222 3.32 1.26 2.94 1.16 1 2
30-33 30 31.74 422 10.14 2.16 8.18 2.15 6 5
30-34 30 32.05 472 16.25 20.56 16.62 14.15 21 31
30-35 30 30.78 132 1.29 0.81 2.45 0.80 0 1
30-36 30 30.73 272 8.24 4.95 6.59 4.03 9 9
30-37 30 3219 572 16.41 36.60 17.42 30.60 2 3
30-38 30 31.54 552 190.22 39.15 185.36 18.82 19 20
30-39 30 31.24 252 4.67 3.02 4.10 241 1 1

30-4 30 3147 53 0.31 0.32 0.27 0.30 0 0
30-40 30 31.82 452 10.37 4.38 10.30 3.77 3 3
30-41 30 31.38 502 17.87 8.88 12.67 7.54 3 3
30-42 30 3244 1,052 27.66 9.01 37.35 8.27 8 9
30-43 30 32.74 1,072 317.17 7.81 287.15 7.86 86 96
30-44 30 33.03 1,077 102.15 159.83 230.84 45.24 67 77
30-45 30 32.83 1,057 27.08 62.40 125.22 27.40 61 66
30-46 30 32.56 423 6.26 2.16 6.41 2.09 2 4
30-47 30 33.31 431 7.93 20.61 8.17 10.10 10 14
30-48 30 3244 215 1.42 1.01 1.30 1.00 0 0
30-49 30 32.60 411 6.38 1.74 8.94 1.79 34 36

30-5 30 31.75 211 4.02 4.79 3.66 4.05 6 14

30-6 30 31.03 91 0.66 0.44 0.48 0.43 0 0

242 | Appendix

Table A.13: Results for Benchmark 1 - SBP.

M Uep(70) Ur(%) J Fits(s) Fps(s) Ous(s) Opps(s) Pus(s) Prps(s)
30-7 30 31.28 171 1.33 0.77 1.17 0.77 0 2
30-8 30 31.53 191 2.35 2.83 2.00 2.61 0 2
30-9 30 30.38 55 0.32 0.27 0.32 0.28 0 0
33-0 33 3514 23 0.13 0.14 0.14 0.16 0 0
33-1 33 3511 115 1.85 1.17 0.92 1.14 0 0

33-10 33 3460 111 3.21 1.42 0.81 1.30 2 4
33-11 33 3493 231 3.80 5.01 3.62 5.75 0 2
33-12 33 3471 223 2.96 2.68 2.37 2.66 0 0
33-13 33 34.00 103 0.59 0.71 0.50 0.64 0 0
33-14 33 3464 183 1.46 1.08 1.28 1.01 0 0
33-15 33 34.39 203 1.64 2.24 1.35 1.81 0 1
33-16 33 34.87 507 46.68 32.98 350.42 17.87 38 42
33-17 33 33.70 207 15.87 0.84 16.73 0.84 16 17
33-18 33 3447 407 14.25 1.77 47.62 1.76 42 42
33-19 33 34.84 457 21.92 6.42 126.71 5.45 40 41
33-2 33 34.56 55 0.28 0.34 0.30 0.32 0 0
33-20 33 33.69 107 2.34 0.47 0.82 0.48 0 1
33-21 33 3461 257 8.89 10.27 169.18 8.36 17 20
33-22 33 3496 557 37.24 47.65 4,054.40 27.76 17 23
33-23 33 35.30 577 29.53 85.85 394.71 60.95 12 28
33-24 33 33.88 277 11.07 14.04 839.45 11.05 6 11
33-25 33 34.00 137 3.23 1.68 212 1.65 0 1
33-26 33 35.05 477 29.79 23.79 15.95 23.25 2 7
33-27 33 34.28 427 12.36 19.43 75.24 14.25 35 41
33-28 33 33.92 47 0.42 0.24 0.36 0.26 0 0
33-29 33 3426 227 5.10 5.42 46.02 4.43 14 20
33-3 33 34.82 95 0.54 0.57 0.42 0.54 0 2
33-30 33 3526 527 27.49 54.24 2,176.09 26.69 17 42
33-31 33 3481 522 49.56 17.37 15.98 14.74 2 3

A.2 Evaluation of Scheduling Design

Table A.13: Results for Benchmark 1 - SBP.

| 243

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
33-32 33 3429 222 6.32 0.81 28.65 0.85 21 21
33-33 33 3474 422 9.92 217 10.55 2.09 5 5
33-34 33 35.05 472 24.79 18.56 20.06 14.49 23 34
33-35 33 33.78 132 1.44 0.79 2.20 0.79 0 1
33-36 33 33.73 272 5.09 4.84 5.38 3.95 12 11
33-37 33 35.19 572 110.18 43.60 22.03 32.67 3 2
33-38 33 3454 552 11.71 32.38 21.85 18.42 22 23
33-39 33 3424 252 491 3.04 3.73 2.45 1 1

33-4 33 34.47 53 0.35 0.31 0.34 0.31 0 0
33-40 33 34.82 452 9.51 4.27 9.78 3.64 2 3
33-41 33 3438 502 17.39 9.00 13.40 7.65 4 3
33-42 33 3544 1,052 34.28 8.83 40.15 8.24 8 9
33-43 33 3574 1,072 270.39 8.13 946.32 7.98 144 138
33-44 33 36.03 1,077 62.39 152.30 175.61 49.68 68 77
33-45 33 35.83 1,057 28.31 91.47 368.73 25.77 124 111
33-46 33 3556 423 5.72 2.20 6.15 2.14 2 3
33-47 33 36.31 431 8.01 6.78 7.08 7.76 10 15
33-48 33 3544 215 1.51 1.04 1.26 0.99 0 2
33-49 33 35.60 411 5.69 1.82 13.54 1.87 42 44

33-5 33 3475 211 4.35 4.24 3.02 3.68 0 2

33-6 33 34.03 91 0.74 0.44 0.48 0.45 0 0

33-7 33 3428 171 1.55 0.79 1.25 0.77 0 2

33-8 33 3453 191 2.37 2.75 1.83 2.57 0 2

33-9 33 33.38 55 0.48 0.27 0.27 0.28 0 0

36-0 36 38.14 23 0.14 0.15 0.16 0.15 0 0

36-1 36 38.11 115 1.17 1.11 0.89 1.12 0 0
36-10 36 37.60 111 1.50 1.47 1.49 1.33 4 4
36-11 36 3793 231 3.97 5.06 3.81 5.68 0 2
36-12 36 37.71 223 2.95 2.50 3.34 2.50 0 0

244 |

Table A.13: Results for Benchmark 1 - SBP.

Appendix

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)

36-13 36 37.00 103 0.74 0.71 0.51 0.64 0 0
36-14 36 3764 183 1.54 1.08 1.24 1.00 0 0
36-15 36 37.39 203 1.67 2.29 1.71 1.87 0 2
36-16 36 37.87 507 32.60 32.38 801.34 17.12 45 45
36-17 36 36.70 207 4.30 0.80 37.57 0.88 21 21
36-18 36 3747 407 13.63 1.75 45.31 1.82 47 47
36-19 36 37.84 457 21.54 5.99 71.46 5.36 42 47

36-2 36 37.56 55 0.33 0.34 0.29 0.33 0 0
36-20 36 36.69 107 343 047 0.84 0.48 0 1
36-21 36 37.61 257 7.06 5.47 331.36 4.48 21 21
36-22 36 3796 557 27.21 38.37 20.54 28.90 2 7
36-23 36 3830 577 38.13 81.49 476.40 63.01 17 32
36-24 36 36.88 277 14.86 17.30 646.84 11.48 6 12
36-25 36 37.00 137 2.78 1.66 2.05 1.65 0 1
36-26 36 38.05 477 2412 27.03 14.13 22.54 2 8
36-27 36 37.28 427 19.98 21.06 350.50 12.86 62 61
36-28 36 36.92 47 0.39 0.25 0.29 0.25 0 0
36-29 36 3726 227 12.68 3.88 89.87 3.67 20 21

36-3 36 37.82 95 0.51 0.58 0.61 0.55 0 2
36-30 36 38.26 527 110.38 54.82 2,325.25 26.10 43 43
36-31 36 37.81 522 20.09 17.31 41.63 14.69 3 3
36-32 36 3729 222 5.07 0.92 21.94 0.84 21 21
36-33 36 3774 422 8.47 2.26 9.55 2.16 5 6
36-34 36 38.05 472 27.05 30.32 428.82 13.44 44 45
36-35 36 36.78 132 1.22 0.77 2.27 0.76 0 1
36-36 36 36.73 272 7.09 4.87 9.89 4.01 12 13
36-37 36 38.19 572 106.34 41.21 21.15 28.46 2 3
36-38 36 37.54 552 203.95 29.79 20.60 18.89 25 26
36-39 36 3724 252 4.80 3.05 441 2.44 1 1

A.2 Evaluation of Scheduling Design | 245
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
36-4 36 3747 53 0.41 0.31 0.26 0.31 0 0
36-40 36 37.82 452 10.34 4.42 10.29 3.77 2 3
36-41 36 37.38 502 16.20 8.96 13.42 7.65 3 3
36-42 36 38.44 1,052 28.15 7.08 56.94 6.51 10 10
36-43 36 38.74 1,072 189.61 12.44 665.92 8.17 160 145
36-44 36 39.03 1,077 59.64 202.91 396.23 51.07 120 117
36-45 36 38.83 1,057 25.24 91.39 291.51 25.75 121 112
36-46 36 38.56 423 6.84 2.19 7.92 2.08 4 4
36-47 36 39.31 431 10.23 6.72 10.80 9.08 18 22
36-48 36 3844 215 2.04 1.02 1.42 0.99 0 2
36-49 36 38.60 411 6.88 1.83 9.68 1.85 42 44
36-5 36 37.75 211 4.06 4.25 2.56 3.64 0 2
36-6 36 3703 91 0.93 0.44 0.64 0.44 0 0
36-7 36 3728 171 1.61 0.79 1.28 0.78 0 2
36-8 36 3753 191 2.65 3.10 1.74 2.81 0 4
36-9 36 3638 55 0.32 0.27 0.28 0.29 0 0
39-0 39 4114 23 0.15 0.14 0.14 0.15 0 0
39-1 39 4111 115 1.20 1.15 0.92 1.15 0 0
39-10 39 40.60 111 3.61 1.47 3.53 1.32 4 6
39-11 39 4093 231 5.46 4.56 386.80 4.74 8 10
39-12 39 40.71 223 3.06 5.26 2.77 4.42 0 2
39-13 39 40.00 103 0.76 0.71 0.53 0.62 0 0
39-14 39 40.64 183 1.67 1.08 1.28 1.00 0 0
39-15 39 40.39 203 1.91 2.31 1.76 1.86 0 2
39-16 39 40.87 507 30.62 21.53 28.44 16.40 6 10
39-17 39 39.70 207 12.93 0.84 11.56 0.86 21 22
39-18 39 4047 407 10.21 1.77 14.90 1.79 47 48
39-19 39 40.84 457 23.32 6.10 237.70 5.35 48 50
39-2 39 4056 55 0.30 0.35 0.30 0.32 0 0

246 |

Table A.13: Results for Benchmark 1 - SBP.

Appendix

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)

39-20 39 39.69 107 2.58 0.49 0.83 0.48 0 1
39-21 39 40.61 257 6.61 5.49 152.72 4.45 23 23
39-22 39 4096 557 104.55 37.05 54.84 27.18 3 8
39-23 39 4130 577 55.19 97.82 2,740.13 69.12 17 43
39-24 39 39.88 277 10.96 12.88 1,355.21 11.38 12 16
39-25 39 40.00 137 2.49 1.68 2.08 1.65 0 1
39-26 39 41.05 477 34.14 28.94 18.57 23.97 2 14
39-27 39 40.28 427 20.95 18.57 267.43 13.07 63 63
39-28 39 39.92 47 0.29 0.25 0.29 0.26 0 0
39-29 39 40.26 227 4.31 3.76 112.71 3.47 21 22

39-3 39 40.82 95 0.48 0.41 0.57 0.42 0 2
39-30 39 4126 527 32.88 48.33 1,953.70 28.76 44 48
39-31 39 40.81 522 17.90 17.88 43.37 15.16 4 3
39-32 39 40.29 222 3.77 0.83 13.02 0.86 21 21
39-33 39 40.74 422 6.74 222 8.94 217 5 6
39-34 39 41.05 472 23.18 21.46 158.07 14.07 53 48
39-35 39 39.78 132 1.21 0.74 2.43 0.74 0 1
39-36 39 39.73 272 5.27 4.80 6.35 3.93 13 14
39-37 39 4119 572 51.36 52.79 41.90 32.64 22 24
39-38 39 40.54 552 12.11 30.72 17.77 18.59 28 29
39-39 39 4024 252 3.77 3.05 4.12 2.46 1 1

39-4 39 40.47 53 0.29 0.31 0.24 0.30 0 0
39-40 39 40.82 452 17.15 1.68 45.79 1.75 52 52
39-41 39 40.38 502 14.90 9.01 13.76 7.58 4 3
39-42 39 4144 1,052 29.51 7.06 47.03 6.55 16 11
39-43 39 41.74 1,072 295.37 9.03 655.60 8.96 157 160
39-44 39 42.03 1,077 73.30 200.30 21,740.77 54.84 119 118
39-45 39 41.83 1,057 24.16 89.97 3,588.81 24.06 119 113
39-46 39 4156 423 5.24 222 8.39 2.18 4 4

A.2 Evaluation of Scheduling Design | 247
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
39-47 39 4231 431 9.23 6.83 13.12 9.19 39 39
39-48 39 4144 215 1.79 1.01 1.27 1.00 0 2
39-49 39 41.60 411 6.07 1.90 12.35 1.89 53 52
39-5 39 40.75 211 5.95 4.29 2.25 3.73 0 2
39-6 39 40.03 91 0.72 0.44 0.65 0.45 0 0
39-7 39 4028 171 1.49 0.79 1.20 0.77 0 2
39-8 39 4053 191 2.32 2.24 1.74 2.18 0 3
39-9 39 3938 55 0.33 0.27 0.36 0.28 0 0
42-0 42 44.14 23 0.15 0.15 0.14 0.15 0 0
42-1 42 4411 115 0.94 1.18 0.93 1.14 0 0
42-10 42 43.60 111 10.48 1.56 1.21 1.42 4 6
42-11 42 4393 231 3.77 5.16 3.40 5.89 0 2
42-12 42 4371 223 2.57 5.00 2.64 4.25 0 2
42-13 42 43.00 103 0.63 0.73 0.51 0.62 0 0
42-14 42 43.64 183 1.59 1.18 1.27 1.05 0 2
42-15 42 4339 203 1.56 2.32 1.75 1.86 0 2
42-16 42 43.87 507 26.73 3370 21,740.36 16.43 55 54
42-17 42 42.70 207 478 0.82 28.99 0.85 26 26
42-18 42 4347 407 10.26 1.78 36.08 1.80 52 53
42-19 42 43.84 457 14.66 6.24 1,148.46 5.44 57 57
42-2 42 4356 55 0.31 0.34 0.34 0.33 0 0
42-20 42 42.69 107 2.14 0.50 0.86 0.47 0 1
42-21 42 43.61 257 5.10 5.60 115.74 4.57 24 24
42-22 42 4396 557 111.69 37.03 47.97 28.62 3 8
42-23 42 4430 577 252.02 79.62 2,045.87 67.68 17 48
42-24 42 42.88 277 47.87 12.90 425.76 11.35 11 16
42-25 42 43.00 137 1.51 1.92 2.18 1.75 0 11
42-26 42 4405 477 28.21 37.57 62.34 23.30 52 53
42-27 42 4328 427 13.98 23.53 129.59 12.70 66 70

248 | Appendix
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
42-28 42 42.92 47 0.28 0.25 0.29 0.25 0 0
42-29 42 4326 227 3.23 4.90 77.49 4.38 25 28
42-3 42 4382 95 0.44 0.43 5.21 0.43 10 10
42-30 42 4426 527 102.73 50.38 158.61 26.77 48 48
42-31 42 4381 522 15.83 17.84 26.31 15.02 3 3
42-32 42 4329 222 3.74 0.83 14.83 0.85 21 21
42-33 42 4374 422 7.40 2.19 8.34 2.13 5 6
42-34 42 4405 472 14.18 21.81 202.18 13.72 56 51
42-35 42 42.78 132 1.22 0.92 1.26 1.05 0 11
42-36 42 4273 272 4.67 4.99 6.74 4.11 15 16
42-37 42 4419 572 37.49 42.28 32.05 31.36 3 3
42-38 42 4354 552 16.41 27.42 257.76 18.47 35 33
42-39 42 4324 252 3.18 3.00 4.06 2.45 1 1

42-4 42 4347 53 0.24 0.31 0.27 0.30 0 0
42-40 42 43.82 452 18.19 1.77 31.82 1.79 52 52
42-41 42 4338 502 10.97 9.02 127.16 7.76 5 4
42-42 42 4444 1,052 18.73 7.07 59.57 6.54 10 11
42-43 42 4474 1,072 61.35 8.81 1,002.60 8.58 178 175
42-44 42 45.03 1,077 62.94 265.20 24426 63.98 122 127
42-45 42 4483 1,057 27.51 81.28 167.64 22.75 122 117
42-46 42 4456 423 4.82 2.26 7.87 2.18 4 6
42-47 42 4531 431 7.56 7.09 11.90 9.16 38 40
42-48 42 4444 215 1.36 1.03 1.29 1.02 0 2
42-49 42 4460 411 4.84 1.97 7.77 2.02 50 52
42-5 42 43.75 211 2.56 4.20 2.02 3.64 0 2
42-6 42 43.03 91 0.59 0.44 0.59 0.45 0 0
42-7 42 4328 171 1.29 0.79 1.25 0.80 0 2
42-8 42 4353 191 1.77 2.04 12.87 2.00 20 20
429 42 4238 55 0.28 0.27 0.27 0.28 0 0

A.2 Evaluation of Scheduling Design | 249
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
45-0 45 47.14 23 0.14 0.14 0.12 0.15 0 0
45-1 45 4711 115 0.83 1.16 0.88 1.17 0 0
45-10 45 46.60 111 0.78 1.50 1.42 1.38 5 6
45-11 45 4693 231 414 6.14 10.98 5.80 8 12
45-12 45 46.71 223 2.54 5.23 2.35 4.30 0 2
45-13 45 46.00 103 0.56 0.71 0.54 0.64 0 0
45-14 45 46.64 183 1.43 1.17 1.31 1.06 0 2
45-15 45 46.39 203 1.27 2.30 1.72 1.82 0 2
45-16 45 46.87 507 21.18 2512 21,744.04 18.12 57 61
45-17 45 4570 207 7.81 0.84 18.71 0.87 26 27
45-18 45 46.47 407 7.94 1.83 15.92 1.82 58 58
45-19 45 46.84 457 26.51 6.47 228.03 5.71 58 60
45-2 45 46.56 55 0.34 0.34 0.30 0.32 0 0
45-20 45 45.69 107 1.00 0.47 0.82 0.47 0 1
45-21 45 46.61 257 6.58 5.50 232.10 452 24 30
45-22 45 46.96 557 108.40 43.10 30.22 28.11 3 9
45-23 45 4730 577 1,384.31 103.21 11,416.51 65.06 25 48
45-24 45 4588 277 31.20 14.04 276.08 11.61 11 17
45-25 45 46.00 137 1.49 1.85 1.71 1.75 0 11
45-26 45 47.05 477 28.86 29.80 49.73 24.22 52 53
45-27 45 46.28 427 15.31 18.60 414.43 13.08 73 73
45-28 45 45.92 47 0.28 0.25 0.29 0.27 0 0
45-29 45 46.26 227 3.10 4.80 78.91 4.49 24 30
45-3 45 46.82 95 0.41 0.42 4.50 0.44 10 10
45-30 45 4726 527 32.61 64.89 1,637.79 28.83 48 53
45-31 45 46.81 522 16.48 18.01 21.72 15.30 3 4
45-32 45 4629 222 3.21 0.85 19.62 0.84 21 21
45-33 45 46.74 422 6.23 2.31 10.87 2.18 11 7
45-34 45 47.05 472 13.92 22.13 112.62 13.87 54 54

250 | Appendix
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
45-35 45 4578 132 1.12 0.90 1.20 1.04 0 11
45-36 45 45.73 272 17.69 4.82 8.09 3.95 16 17
45-37 45 47.19 572 218.75 47 .44 625.53 30.70 22 33
45-38 45 46.54 552 23.43 27.07 32.62 18.29 37 36
45-39 45 4624 252 3.08 3.04 3.62 2.44 1 1
45-4 45 4647 53 0.27 0.31 0.31 0.31 0 0
45-40 45 46.82 452 11.44 1.71 28.88 1.76 52 52
45-41 45 46.38 502 9.39 9.01 12.42 7.58 5 4
45-42 45 4744 1,052 16.90 3.98 59.35 4.00 10 12
45-43 45 47.74 1,072 146.71 8.79 724.99 8.68 186 183
45-44 45 48.03 1,077 65.87 189.45 320.45 60.39 118 127
45-45 45 47.83 1,057 82.37 71.90 320.11 22.72 184 162
45-46 45 4756 423 4.85 1.65 7.59 1.70 4 5
45-47 45 48.31 431 6.66 7.27 12.21 10.27 40 41
45-48 45 4744 215 1.32 0.85 1.32 0.86 0 1
45-49 45 47.60 411 5.52 1.93 112.22 1.90 62 60
45-5 45 46.75 211 2.95 4.47 2.12 3.89 0 2
45-6 45 46.03 91 0.59 0.44 0.63 0.44 0 0
45-7 45 4628 171 1.18 0.81 1.18 0.80 0 2
45-8 45 4653 191 2.08 2.08 10.19 2.04 20 20
45-9 45 4538 55 0.60 0.29 0.94 0.28 0 0
48-0 48 50.14 23 0.12 0.14 0.12 0.16 0 0
48-1 48 50.11 115 0.83 1.13 0.72 1.15 0 0
48-10 48 49.60 111 9.24 1.88 15.16 1.66 6 8
48-11 48 4993 231 6.58 5.18 3.23 5.95 0 2
48-12 48 49.71 223 2.37 4.69 2.73 4.14 0 2
48-13 48 49.00 103 0.54 0.74 0.50 0.64 0 0
48-14 48 4964 183 1.35 1.16 1.30 1.05 0 2
48-15 48 4939 203 1.39 2.32 1.56 1.84 0 2

A.2 Evaluation of Scheduling Design | 251
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
48-16 48 49.87 507 33.77 32.28 613.49 17.54 68 65
48-17 48 48.70 207 3.77 0.83 31.99 0.87 31 31
48-18 48 4947 407 7.55 1.81 13.05 1.83 62 63
48-19 48 49.84 457 26.89 6.64 533.23 5.82 58 67

48-2 48 4956 55 0.37 0.33 0.31 0.32 0 0
48-20 48 48.69 107 0.93 0.46 0.91 0.49 0 1
48-21 48 49.61 257 5.04 5.72 364.68 4.70 30 31
48-22 48 4996 557 57.72 38.01 25.26 29.08 3 9
48-23 48 50.30 577 764.89 126.74 3,633.15 63.05 43 53
48-24 48 48.88 277 30.38 26.07 94.00 11.21 11 18
48-25 48 49.00 137 1.46 1.89 1.79 1.78 0 11
48-26 48 50.05 477 21.04 33.51 44.07 23.90 52 53
48-27 48 49.28 427 15.37 18.01 247.77 12.33 76 80
48-28 48 4892 47 0.29 0.54 0.30 0.54 0 1
48-29 48 4926 227 3.17 422 151.27 3.90 25 31
48-3 48 4982 95 0.46 0.42 2.60 0.43 10 10
48-30 48 50.26 527 198.74 51.28 1,440.13 27.87 53 58
48-31 48 4981 522 16.94 17.86 14.77 15.14 3 4
48-32 48 4929 222 2.78 0.85 12.74 0.88 21 21
48-33 48 49.74 422 6.61 1.66 9.85 1.66 7 7
48-34 48 50.05 472 10.77 19.49 128.13 12.99 57 58
48-35 48 48.78 132 1.08 0.89 1.17 1.02 0 11
48-36 48 48.73 272 9.30 5.12 11.45 4.08 17 19
48-37 48 50.19 572 137.55 41.34 18.73 38.06 2 53
48-38 48 4954 552 83.33 30.37 14.67 18.61 38 39
48-39 48 4924 252 3.30 2.90 3.45 2.29 1 2
48-4 48 4947 53 0.31 0.31 0.32 0.31 0 0
48-40 48 49.82 452 13.62 1.68 16.71 1.71 52 53
48-41 48 49.38 502 14.77 8.85 12.41 7.59 4 4

252 | Appendix

Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) prs(s) Ons(s) Ofps(s) Pis(s) prs (s)
48-42 48 50.44 1,052 17.29 4.04 571.03 4.12 71 61
48-43 48 50.74 1,072 264.87 9.69 715.30 9.47 196 198

48-44 48 51.03 1,077 86.40 179.07 21,716.54 5193 179 168
48-45 48 50.83 1,057 108.19 68.86 21,761.47 22.57 172 163

48-46 48 50.56 423 5.10 1.68 9.22 1.71 24 24
48-47 48 51.31 431 6.56 7.04 14.77 9.17 46 48
48-48 48 50.44 215 1.30 0.85 1.72 0.86 10 10
48-49 48 50.60 411 5.12 2.00 160.24 1.99 68 68
48-5 48 49.75 211 2.25 4.34 2.26 3.79 0 2
48-6 48 49.03 91 0.53 0.44 0.59 0.46 0 0
48-7 48 49.28 171 1.23 0.69 1.46 0.71 0 1
48-8 48 4953 191 1.79 2.05 8.32 2.02 20 22
489 48 48.38 55 0.60 0.28 0.89 0.28 0 0
51-0 51 53.14 23 0.13 0.14 0.14 0.15 0 0
51-1 51 53.11 115 0.86 1.17 0.79 1.15 0 0
51-10 51 52.60 111 10.11 1.77 13.93 1.54 6 10
51-11 51 5293 231 7.16 6.15 78.62 6.14 8 14
51-12 51 5271 223 2.44 5.15 241 4.33 0 2
51-13 51 52.00 103 0.56 0.72 0.63 0.64 0 0
51-14 51 52.64 183 1.50 1.16 1.22 1.06 0 2
51-15 51 5239 203 1.61 231 1.68 1.85 0 2

51-16 51 52.87 507 283.61 2538 21,767.39 14.64 109 72

51-17 51 51.70 207 8.01 0.84 12.69 0.85 32 32
51-18 51 52.47 407 7.19 1.84 30.10 1.88 73 72
51-19 51 52.84 457 30.14 5.19 304.62 4.61 66 71
51-2 51 52.56 55 0.32 0.34 0.28 0.32 0 0
51-20 51 51.69 107 0.80 0.43 3.69 0.45 5 5
51-21 51 52.61 257 6.86 4.97 392.87 4.21 37 34

51-22 51 5296 557 43.63 4291 596.86 29.75 5 9

A.2 Evaluation of Scheduling Design | 253
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
51-23 51 53.30 577 638.50 12891 1,372.04 60.67 49 54
51-24 51 51.88 277 55.56 13.30 1,017.71 11.76 16 27
51-25 51 52.00 137 1.40 2.09 292 1.96 0 15
51-26 51 53.05 477 34.75 34.99 36.36 22.86 52 58
51-27 51 5228 427 13.04 25.78 426.21 11.87 81 83
51-28 51 51.92 47 6.24 0.50 0.29 0.50 0 1
51-29 51 5226 227 6.05 3.06 66.49 2.88 26 33
51-3 51 5282 95 0.47 0.42 2.34 0.44 10 10
51-30 51 53.26 527 71.11 53.75 3,627.57 28.77 52 63
51-31 51 52.81 522 14.95 17.79 326.27 14.87 3 5
51-32 51 5229 222 2.62 0.83 9.00 0.87 21 22
51-33 51 52.74 422 8.45 1.66 27.29 1.68 26 26
51-34 51 53.05 472 39.80 2563 21,701.00 12.52 60 69
51-35 51 51.78 132 1.21 0.88 1.06 0.99 0 11
51-36 51 51.73 272 11.40 6.65 60.27 5.33 20 28
51-37 51 53.19 572 177.02 52.28 1,048.37 32.96 22 34
51-38 51 5254 552 100.85 27.37 20.53 18.76 42 43
51-39 51 5224 252 3.29 2.90 3.62 2.30 1 2
51-4 51 5247 53 0.29 0.33 0.26 0.31 0 0
51-40 51 52.82 452 12.33 1.62 10.14 1.68 52 53
51-41 51 52.38 502 9.57 8.91 11.84 7.62 5 5
51-42 51 5344 1,052 16.75 412 269.36 4.16 61 62
51-43 51 53.74 1,072 171.25 9.88 787.76 9.49 203 207
51-44 51 54.03 1,077 59.65 186.33 21,744.26 50.28 177 172
51-45 51 53.83 1,057 46.10 15.41 21,784.19 21.29 167 168
51-46 51 53.56 423 4.69 1.67 7.32 1.68 24 24
51-47 51 5431 431 7.15 6.85 14.71 8.88 47 50
51-48 51 53.44 215 1.21 0.84 1.33 0.85 10 10
51-49 51 53.60 411 4.76 2.09 58.75 2.05 81 76

254 | Appendix

Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
51-5 51 5275 211 2.00 4.69 2.20 3.97 0 2
51-6 51 52.03 91 0.50 0.44 0.54 0.45 0 0
51-7 51 5228 171 1.11 0.66 2.67 0.69 8 8
51-8 51 5253 191 1.65 2.61 3.30 2.48 8 10
51-9 51 51.38 55 0.52 0.27 0.59 0.29 0 0
54-0 54 56.14 23 0.11 0.15 0.12 0.16 0 0
54-1 54 56.11 115 0.68 1.13 0.73 1.18 0 1
54-10 54 55.60 111 3.63 1.56 4.04 1.38 6 11
54-11 54 5593 231 2.66 5.34 3.07 6.04 0 2
54-12 54 55.71 223 3.52 5.16 2.74 4.40 0 2
54-13 54 55.00 103 0.54 0.72 0.49 0.63 0 0
54-14 54 55.64 183 1.77 1.14 1.22 1.05 0 2
54-15 54 55.39 203 1.50 2.32 1.37 1.86 0 2
54-16 54 55.87 507 40.72 25.82 495.80 15.53 77 76
54-17 54 54.70 207 4.14 0.84 21.29 0.86 36 36
54-18 54 55.47 407 7.74 1.90 26.28 1.92 79 78
54-19 54 55.84 457 13.52 5.17 663.57 4.70 75 78
54-2 54 55.56 55 0.30 0.35 0.32 0.33 0 0
54-20 54 54.69 107 0.86 0.43 4.48 0.45 5 6
54-21 54 55.61 257 4.28 5.04 349.30 4.24 33 36
54-22 54 55.96 557 271.04 42.44 207.42 28.39 3 9
54-23 54 56.30 577 3,595.32 126.25 4,881.69 64.44 47 64
54-24 54 54.88 277 82.00 13.54 812.70 11.80 17 28
54-25 54 55.00 137 1.78 2.07 3.80 1.93 0 15
54-26 54 56.05 477 39.75 36.34 60.06 25.99 52 57
54-27 54 55.28 427 14.12 16.80 241.06 12.03 85 90
54-28 54 54.92 47 4.54 047 0.30 0.48 0 1
54-29 54 55.26 227 44.64 3.32 387.04 3.22 33 39
54-3 54 55.82 95 0.47 0.41 2.34 0.45 10 10

A.2 Evaluation of Scheduling Design | 255
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
54-30 54 56.26 527 669.11 99.10 1,209.27 28.03 60 78
54-31 54 55.81 522 16.70 17.97 304.63 14.84 3 5
54-32 54 5529 222 271 0.83 471 0.89 21 22
54-33 54 55.74 422 7.71 1.65 38.68 1.70 27 27
54-34 54 56.05 472 13.96 20.28 65.99 13.47 69 74
54-35 54 54.78 132 1.21 0.83 1.07 0.97 0 11
54-36 54 5473 272 104.99 6.55 18.21 5.23 23 30
54-37 54 56.19 572 26.48 45.58 234.72 31.97 5 5
54-38 54 55.54 552 20.75 28.35 814.54 18.53 67 49
54-39 54 55.24 252 3.93 2.84 4.01 2.27 1 2

54-4 54 55.47 53 0.29 0.33 0.27 0.31 0 0
54-40 54 55.82 452 10.70 1.68 16.03 1.69 52 53
54-41 54 55.38 502 13.70 8.99 2297 7.65 5 5
54-42 54 56.44 1,052 23.29 4.12 219.53 4.19 62 63
54-43 54 56.74 1,072 52527 9.86 3,027.78 9.58 222 224
54-44 54 57.03 1,077 64.12 196.83 21,743.23 66.48 169 177
54-45 54 56.83 1,057 39.63 62.05 21,774.33 23.17 173 168
54-46 54 56.56 423 4.96 1.71 7.02 1.73 24 26
54-47 54 5731 431 8.05 4.15 11.30 4.03 47 52
54-48 54 56.44 215 1.23 0.88 1.46 0.88 10 11
54-49 54 56.60 411 5.06 2.09 564.97 2.10 76 77

54-5 54 55.75 211 2.00 4.64 93.62 4.00 22 23

54-6 54 55.03 91 0.90 0.47 0.64 0.46 0 2

54-7 54 55.28 171 1.20 0.71 2.10 0.72 8 10

54-8 54 55.53 191 1.74 2.09 4.32 2.02 20 22

54-9 54 5438 55 0.58 0.27 0.63 0.29 0 0

57-0 57 59.14 23 0.12 0.14 0.13 0.14 0 0

57-1 57 59.11 115 0.74 1.18 0.73 1.14 0 0
57-10 57 58.60 111 2.96 1.58 20.05 1.39 6 14

256 | Appendix
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
57-11 57 5893 231 293.20 6.64 277.85 6.00 8 36
57-12 57 58.71 223 2.06 5.54 2.03 4.65 0 2
57-13 57 58.00 103 0.53 0.72 0.51 0.64 0 0
57-14 57 58.64 183 1.52 1.16 1.31 1.06 0 2
57-15 57 58.39 203 1.47 2.26 1.38 1.84 0 2
57-16 57 58.87 507 28.29 22.46 28.46 16.50 7 13
57-17 57 57.70 207 4.80 0.89 10.72 0.92 36 36
57-18 57 58.47 407 7.34 1.90 17.72 1.91 83 83
57-19 57 58.84 457 16.66 5.29 509.05 4.70 81 86

57-2 57 5856 55 0.27 0.36 0.28 0.33 0 0
57-20 57 57.69 107 0.70 0.45 7.67 0.44 6 6
57-21 57 58.61 257 72.03 5.00 623.12 4.16 38 41
57-22 57 5896 557 867.68 61.95 3,708.12 32.30 51 88
57-23 57 5930 577 6,904.96 12819 1,419.10 65.56 49 69
57-24 57 57.88 277 50.38 14.81 509.46 12.18 16 31
57-25 57 58.00 137 1.47 2.06 1.75 1.90 0 15
57-26 57 59.05 477 26.56 34.21 158.10 22.18 52 58
57-27 57 58.28 427 9.85 21.64 338.69 11.53 90 93
57-28 57 57.92 47 3.35 0.44 0.36 0.45 0 1
57-29 57 58.26 227 653.41 3.55 385.68 3.35 35 40

57-3 57 58.82 95 0.49 0.41 1.77 0.45 10 10
57-30 57 59.26 527 1,244.61 89.73 2,412.80 25.63 62 83
57-31 57 58.81 522 13.29 15.88 21.42 14.04 5 4
57-32 57 5829 222 4.35 0.86 113.83 0.86 41 41
57-33 57 58.74 422 7.49 1.71 25.25 1.72 27 28
57-34 57 59.05 472 14.86 23.01 73.16 13.20 75 78
57-35 57 57.78 132 1.23 0.50 1.11 0.59 0 11
57-36 57 57.73 272 26.55 6.45 16.99 5.25 24 33
57-37 57 59.19 572 1,328.10 95.06 6,206.40 39.01 22 92

A.2 Evaluation of Scheduling Design

Table A.13: Results for Benchmark 1 - SBP.

| 257

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
57-38 57 58.54 552 142.87 26.90 769.64 19.37 68 89
57-39 57 58.24 252 3.57 2.87 3.66 2.29 2 2

57-4 57 58.47 53 0.27 0.32 0.26 0.32 0 0
57-40 57 58.82 452 9.97 1.71 12.36 1.75 52 54
57-41 57 58.38 502 11.01 9.09 15.51 7.58 5 5
57-42 57 59.44 1,052 19.20 4.09 230.67 4.22 63 64
57-43 57 59.74 1,072 273.51 1042 21,785.66 9.89 240 241
57-44 57 60.03 1,077 241.89 259.68 21,699.71 50.93 233 218
57-45 57 59.83 1,057 76.79 19.06 21,748.59 22.06 251 213
57-46 57 59.56 423 4.85 1.69 7.92 1.73 24 26
57-47 57 60.31 431 741 11.52 15.75 8.92 54 58
57-48 57 59.44 215 1.32 0.86 2.90 0.87 10 12
57-49 57 59.60 411 5.47 2.13 48.56 213 84 84

57-5 57 58.75 211 1.95 4.77 2.28 4.08 0 2

57-6 57 58.03 91 0.78 0.46 0.52 0.46 0 2
57-7 57 58.28 171 1.14 0.71 1.85 0.71 8 10
57-8 57 58.53 191 1.77 2.10 4.75 2.05 20 22
57-9 57 57.38 55 0.51 0.27 0.54 0.30 0 0

60-0 60 62.14 23 0.12 0.18 0.12 0.18 0 1

60-1 60 62.11 115 0.74 1.87 0.87 1.64 0 4
60-10 60 61.60 111 7.01 1.64 8.26 1.48 6 14
60-11 60 6193 231 3.04 5.60 2.88 6.26 0 8
60-12 60 61.71 223 3.77 493 2.30 4.33 0 2
60-13 60 61.00 103 0.60 0.71 0.49 0.64 0 0
60-14 60 61.64 183 1.68 1.16 1.37 1.06 0 2
60-15 60 61.39 203 1.39 2.30 1.27 1.84 0 2
60-16 60 61.87 507 14.40 35.86 847.22 14.19 87 91
60-17 60 60.70 207 3.65 0.88 14.04 0.89 45 42
60-18 60 61.47 407 7.76 1.95 13.06 1.97 88 88

258 | Appendix

Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
60-19 60 61.84 457 22.93 5.28 21,684.06 4.76 85 90
60-2 60 61.56 55 0.29 0.34 0.27 0.35 0 0
60-20 60 60.69 107 1.21 0.42 7.95 0.48 6 6
60-21 60 61.61 257 30.04 4.05 278.01 3.37 37 43
60-22 60 6196 557 44.61 36.50 28.14 26.81 4 11

60-23 60 62.30 577 3,162.97 95.31 3,753.40 57.87 54 74
60-24 60 60.88 277 271.60 15.45 157.74 12.06 17 37

60-25 60 61.00 137 1.49 1.55 88.59 1.51 20 20
60-26 60 62.05 477 22.11 35.06 33.97 23.76 55 59
60-27 60 61.28 427 23.96 26.22 355.19 11.48 94 101
60-28 60 60.92 47 2.72 041 0.31 0.40 0 1
60-29 60 61.26 227 8.85 3.38 140.01 3.12 35 43
60-3 60 61.82 95 0.46 0.43 0.84 0.45 10 12

60-30 60 6226 527 1,351.20 49.82 1,888.85 25.67 67 88

60-31 60 61.81 522 13.70 18.13 23.81 15.19 4 5
60-32 60 6129 222 5.02 0.83 71.63 0.86 41 41
60-33 60 61.74 422 6.86 1.72 29.21 1.71 27 28

60-34 60 62.05 472 24.97 20.58 165.65 13.11 76 82

60-35 60 60.78 132 1.12 0.51 45.61 0.54 20 20
60-36 60 60.73 272 13.45 6.62 16.97 5.27 25 35
60-37 60 62.19 572 55.78 56.53 1,350.19 35.38 53 54
60-38 60 61.54 552 73.11 31.92 497.57 17.87 57 93
60-39 60 61.24 252 3.13 2.86 3.66 2.30 2 2
60-4 60 61.47 53 0.29 0.32 0.26 0.32 0 0
60-40 60 61.82 452 9.07 1.75 13.22 1.77 52 54
60-41 60 61.38 502 9.92 9.05 151.35 7.79 7 6
60-42 60 6244 1,052 17.77 4.14 294.05 4.18 63 65

60-43 60 62.74 1,072 436.27 11.20 577517 10.39 248 241

60-44 60 63.03 1,077 105.56 267.43 4,820.27 63.35 227 223

A.2 Evaluation of Scheduling Design | 259
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
60-45 60 62.83 1,057 39.28 16.70 21,74428 2290 218 218
60-46 60 62.56 423 4.67 1.72 10.31 1.72 26 26
60-47 60 63.31 431 7.60 7.23 11.30 9.93 54 75
60-48 60 6244 215 1.27 0.88 1.59 0.88 10 12
60-49 60 62.60 411 4.99 2.19 56.47 2.15 92 92
60-5 60 61.75 211 4.30 4.85 3.15 4.07 0 8
60-6 60 61.03 91 0.67 0.46 0.48 0.47 0 2
60-7 60 61.28 171 1.23 0.69 2.01 0.71 8 10
60-8 60 61.53 191 1.90 2.07 11.16 2.01 20 22
60-9 60 60.38 55 0.47 0.30 0.52 0.30 4 4
63-0 63 65.14 23 0.11 0.17 0.11 0.17 0 2
63-1 63 65.11 115 1.38 1.16 0.69 1.27 0 2
63-10 63 64.60 111 12.04 1.60 9.97 141 8 16
63-11 63 64.93 231 14.33 6.82 64.33 6.14 8 37
63-12 63 64.71 223 5.46 6.34 1.94 5.22 0 20
63-13 63 64.00 103 0.50 0.79 0.51 0.66 0 0
63-14 63 64.64 183 1.37 1.11 1.38 1.03 0 2
63-15 63 64.39 203 1.34 2.32 1.70 1.84 0 2
63-16 63 64.87 507 25.71 25.18 21.63 16.74 14 15
63-17 63 63.70 207 2.29 0.86 24.08 0.88 46 46
63-18 63 64.47 407 7.49 2.10 672.26 2.09 94 93
63-19 63 64.84 457 14.40 5.13 289.09 452 89 97
63-2 63 64.56 55 0.29 0.35 0.28 0.33 0 0
63-20 63 63.69 107 0.96 0.42 8.74 0.46 6 6
63-21 63 64.61 257 19.47 4.18 384.74 3.59 45 48
63-22 63 64.96 557 20.35 40.53 29.91 28.57 4 11
63-23 63 65.30 577 4,711.55 111.25 4,66044 65.15 60 84
63-24 63 63.88 277 365.76 15.87 646.42 12.05 23 41
63-25 63 64.00 137 1.53 1.50 59.32 1.51 20 21

260 | Appendix
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
63-26 63 65.05 477 17.65 37.39 30.55 25.11 53 59
63-27 63 64.28 427 8.07 17.67 265.94 11.35 99 105
63-28 63 63.92 47 1.30 0.37 0.29 0.41 0 1
63-29 63 64.26 227 4.46 1.71 73.42 1.68 37 40
63-3 63 64.82 95 0.66 0.43 1.95 0.46 10 12
63-30 63 65.26 527 1,013.84 58.57 1,292.07 28.97 92 93
63-31 63 64.81 522 22.40 16.43 32.16 15.20 3 25
63-32 63 6429 222 6.37 0.83 36.55 0.86 41 41
63-33 63 64.74 422 5.77 1.55 21.05 1.56 28 30
63-34 63 65.05 472 13.10 24.50 71.82 13.02 78 86
63-35 63 63.78 132 0.97 0.52 32.71 0.55 20 20
63-36 63 63.73 272 14.22 6.56 33.94 5.20 30 37
63-37 63 65.19 572 1,613.77 77.10 3,520.66 41.84 22 93
63-38 63 64.54 552 150.97 34.43 1,498.10 1833 77 98
63-39 63 64.24 252 2.89 2.90 3.82 2.30 2 3
63-4 63 6447 53 0.23 0.31 0.26 0.31 0 0
63-40 63 64.82 452 7.05 1.73 16.86 1.75 53 54
63-41 63 64.38 502 8.29 8.97 16.22 7.68 7 6
63-42 63 65.44 1,052 14.26 414 242.45 421 64 66
63-43 63 65.74 1,072 533.93 1298 21,72392 1211 310 301
63-44 63 66.03 1,077 72.27 266.61 21,751.67 73.46 220 230
63-45 63 65.83 1,057 39.76 50.48 21,754.98 24.85 248 219
63-46 63 65.56 423 428 1.76 10.70 1.81 26 28
63-47 63 66.31 431 6.94 7.02 17.76 9.45 75 79
63-48 63 65.44 215 1.12 0.87 1.55 0.88 10 12
63-49 63 65.60 411 4.68 2.25 38.82 2.23 103 100
63-5 63 64.75 211 1.72 5.06 2.38 4.25 0 8
63-6 63 64.03 91 0.56 0.47 0.49 0.47 0 2
63-7 63 64.28 171 1.02 0.69 1.27 0.70 8 10

A.2 Evaluation of Scheduling Design | 261
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
63-8 63 64.53 191 2.03 2.08 1.91 2.03 20 24
63-9 63 63.38 55 0.38 0.30 0.51 0.39 4 4
66-0 66 68.14 23 0.10 0.13 0.12 0.14 4 4
66-1 66 68.11 115 8.21 1.41 0.81 1.18 0 12
66-10 66 67.60 111 1.88 1.31 49.01 1.39 16 18
66-11 66 6793 231 9.72 5.52 7.99 6.18 0 22
66-12 66 67.71 223 2.75 5.46 2.42 4.63 0 2
66-13 66 67.00 103 0.70 0.82 0.48 0.72 0 2
66-14 66 67.64 183 1.02 1.11 1.15 1.02 2 2
66-15 66 67.39 203 1.22 0.77 1.20 0.79 40 40
66-16 66 67.87 507 74.86 28.19 3,92745 14.38 98 104
66-17 66 66.70 207 414 0.89 11.02 0.90 66 47
66-18 66 67.47 407 591 2.04 2,108.03 2.24 103 103
66-19 66 67.84 457 21.57 5.03 3,890.04 450 98 106
66-2 66 67.56 55 0.25 0.34 0.26 0.32 0 0
66-20 66 66.69 107 0.67 0.45 2.14 0.44 6 7
66-21 66 67.61 257 4.88 3.67 1,446.60 3.05 46 50
66-22 66 67.96 557 88.17 44 .47 66.35 31.73 6 55
66-23 66 68.30 577 3,245.32 11342 1,546.83 55.81 58 88
66-24 66 66.88 277 1461.70 15.24 1,230.86 10.68 26 38
66-25 66 67.00 137 2.26 1.47 51.42 1.44 20 21
66-26 66 68.05 477 28.82 35.98 132.72 24.07 53 64
66-27 66 67.28 427 20.61 13.27 430.07 10.56 122 122
66-28 66 66.92 47 1.49 0.33 0.28 0.34 0 1
66-29 66 67.26 227 68.12 1.19 893.07 1.23 61 60
66-3 66 67.82 95 147 0.46 2.06 0.46 20 20
66-30 66 68.26 527 1,693.13 56.61 1,293.23 26.38 89 97
66-31 66 67.81 522 36.22 16.43 219.96 15.64 7 26
66-32 66 6729 222 4.54 0.85 13.36 0.89 41 42

262 | Appendix
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
66-33 66 67.74 422 12.45 1.57 31.95 1.60 29 30
66-34 66 68.05 472 33.18 22,51 117.09 14.27 99 99
66-35 66 66.78 132 1.67 0.52 24.34 0.58 20 20
66-36 66 66.73 272 13.38 6.16 860.85 5.27 46 47
66-37 66 68.19 572 223.00 44.80 297.02 35.20 5 65
66-38 66 67.54 552 35.44 32.12 28.51 19.80 73 103
66-39 66 6724 252 3.95 2.86 4.07 2.36 2 3

66-4 66 6747 53 0.45 0.31 0.25 0.32 0 0
66-40 66 67.82 452 23.00 1.81 21,689.94 1.79 104 103
66-41 66 67.38 502 14.43 8.96 14.28 7.82 8 7
66-42 66 68.44 1,052 31.86 4.18 21,699.20 4.23 117 116
66-43 66 68.74 1,072 1,155.50 12.78 21,765.40 12.20 312 312
66-44 66 69.03 1,077 487.06 255.71 21,751.84 6197 276 273
66-45 66 68.83 1,057 91.72 15.88 9,432.78 26.04 283 264
66-46 66 68.56 423 8.42 1.76 11.09 1.85 47 46
66-47 66 69.31 431 11.04 7.48 13.60 9.01 84 84
66-48 66 68.44 215 1.94 0.85 1.81 0.87 20 20
66-49 66 68.60 411 7.82 2.32 22.25 2.29 116 108

66-5 66 67.75 211 9.90 2.78 1.86 2.60 0 6

66-6 66 67.03 91 0.89 0.49 0.54 0.45 0 2

66-7 66 67.28 171 1.59 0.72 1.35 0.75 10 11

66-8 66 67.53 191 2.62 2.04 2.08 2.01 20 24

66-9 66 66.38 55 0.63 0.31 0.55 0.30 4 4

69-0 69 71.14 23 0.15 0.13 0.10 0.13 4 4

69-1 69 71.11 115 1.51 211 0.75 1.90 0 4
69-10 69 70.60 111 35.77 1.26 52.18 1.52 18 20
69-11 69 7093 231 3.90 418 2.43 4.18 40 40
69-12 69 70.71 223 2.94 3.50 1.97 2.83 40 40
69-13 69 70.00 103 1.04 0.82 0.47 0.71 0 2

A.2 Evaluation of Scheduling Design | 263
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
69-14 69 70.64 183 1.75 0.73 1.26 0.74 2 3
69-15 69 70.39 203 1.95 0.77 1.17 0.79 40 40
69-16 69 70.87 507 46.25 2546 17,779.24 15.20 110 112
69-17 69 69.70 207 5.39 0.92 5.80 0.98 52 52
69-18 69 7047 407 13.09 2.05 872.15 2.08 117 108
69-19 69 70.84 457 28.66 5.14 103.88 4.55 101 111

69-2 69 70.56 55 0.40 0.34 0.26 0.33 0 0
69-20 69 69.69 107 5.97 0.44 11.45 0.45 11 11
69-21 69 70.61 257 51.80 3.60 387.02 3.00 54 53
69-22 69 70.96 557 295.83 54.55 362.84 32.77 53 60
69-23 69 71.30 577 22,601.65 159.18 4,768.05 69.78 67 123
69-24 69 69.88 277 828.13 18.51 801.56 11.75 47 47
69-25 69 70.00 137 474 1.53 60.04 1.50 20 22
69-26 69 71.05 477 71.40 39.39 21,640.14 26.05 103 104
69-27 69 70.28 427 37.02 428 265.39 4.36 124 126
69-28 69 69.92 47 0.76 0.30 0.29 0.29 0 1
69-29 69 70.26 227 19.94 1.20 395.11 1.24 62 62

69-3 69 70.82 95 1.21 0.45 3.00 0.45 21 20
69-30 69 7126 527 4,042.83 60.78 7,71242 25.70 96 113
69-31 69 70.81 522 19.42 6.25 19.78 5.61 103 103
69-32 69 7029 222 4.28 0.88 7.92 0.89 41 42
69-33 69 70.74 422 15.30 1.53 38.43 1.57 49 50
69-34 69 71.05 472 55.51 25.00 139.07 12.77 105 115
69-35 69 69.78 132 2.86 0.52 27.93 0.54 20 21
69-36 69 69.73 272 43.30 5.28 2,71215 433 48 49
69-37 69 7119 572 112.85 56.69 992.29 35.62 53 55
69-38 69 70.54 552 151.40 29.21 38.24 19.26 80 107
69-39 69 7024 252 4.99 2.90 10.51 227 3 3

69-4 69 7047 53 0.38 0.32 0.23 0.31 0 0

264 | Appendix
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
69-40 69 70.82 452 15.56 1.74 21,683.14 1.76 104 103
69-41 69 70.38 502 16.02 8.98 16.99 7.63 9 7
69-42 69 7144 1,052 33.48 418 21,695.43 4.19 130 118
69-43 69 71.74 1,072 1,045.97 1292 21,781.54 12.34 325 324
69-44 69 72.03 1,077 238.95 39896 21,740.62 78.66 277 275
69-45 69 71.83 1,057 153.97 19.53 21,730.26 25.98 297 270
69-46 69 71.56 423 8.66 1.82 12.81 1.83 47 47
69-47 69 72.31 431 11.66 8.49 35.60 11.54 84 93
69-48 69 7144 215 1.88 0.83 2.79 0.89 20 22
69-49 69 71.60 411 7.76 2.45 28.77 241 121 116

69-5 69 70.75 211 4.01 4.88 3.94 4.00 2 12
69-6 69 70.03 91 0.75 0.38 3.87 0.40 8 8

69-7 69 7028 171 2.02 0.71 2.35 0.69 18 18
69-8 69 70.53 191 418 3.37 4.90 3.45 18 25
69-9 69 69.38 55 0.37 0.30 0.52 0.31 4 4

72-0 72 7414 23 0.14 0.13 0.13 0.14 4 4

72-1 72 7411 115 1.65 1.21 0.98 1.07 20 20
72-10 72 73.60 111 1.82 1.26 40.36 1.37 18 22
72-11 72 7393 231 5.00 474 2.59 4.37 40 42
72-12 72 73.71 223 4.96 431 2.49 3.73 0 20
72-13 72 73.00 103 1.03 0.81 0.49 0.70 0 2

72-14 72 73.64 183 2.21 0.73 2.22 0.73 22 22
72-15 72 73.39 203 2.03 0.78 1.20 0.79 40 40
72-16 72 73.87 507 33.54 29.18 3,056.13 14.51 120 118
72-17 72 7270 207 4.93 091 11.59 0.92 56 56
72-18 72 73.47 407 14.86 2.15 121.54 2.11 122 118
72-19 72 73.84 457 34.50 5.14 4,022.52 4.58 115 121
72-2 72 73.56 55 0.37 0.34 0.24 0.34 0 0

72-20 72 72.69 107 3.80 0.43 424 0.48 11 11

A.2 Evaluation of Scheduling Design | 265
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
72-21 72 73.61 257 25.30 3.67 227.97 3.06 58 57
72-22 72 73.96 557 30.85 52.46 38.89 26.52 103 104
72-23 72 7430 577 3593473 20271 21,936.82 74.15 82 132
72-24 72 72.88 277 499.53 16.88 866.00 11.95 46 52
72-25 72 73.00 137 3.71 1.50 38.51 1.47 20 22
72-26 72 74.05 477 1,839.23 45.90 1,538.50 19.17 103 125
72-27 72 73.28 427 336.63 419 855.59 4.37 133 133
72-28 72 7292 47 0.48 0.27 0.31 0.27 0 1
72-29 72 73.26 227 4.35 1.20 294.13 1.23 64 65

72-3 72 73.82 95 0.78 0.45 1.23 0.46 20 20
72-30 72 7426 527 1,903.26 61.77 4,069.27 27.86 100 119
72-31 72 73.81 522 25.25 9.83 82.60 8.97 11 26
72-32 72 7329 222 4.02 0.89 4.55 0.94 41 42
72-33 72 73.74 422 12.44 1.61 40.35 1.56 50 51
72-34 72 74.05 472 78.20 24.47 149.49 12.83 109 122
72-35 72 72.78 132 1.75 0.52 14.54 0.55 20 21
72-36 72 7273 272 49.46 5.46 352.06 4.39 53 52
72-37 72 7419 572 142.47 5244 2,852.89 32.29 55 66
72-38 72 73.54 552 84.00 33.27 39.03 19.41 82 113
72-39 72 7324 252 478 2.87 5.50 2.27 3 3

72-4 72 73.47 53 0.37 0.32 0.23 0.30 0 0
72-40 72 73.82 452 14.99 1.84 21,692.97 1.81 110 103
72-41 72 73.38 502 16.99 9.02 16.43 7.57 9 9
72-42 72 7444 1,052 32.21 4.20 21,677.50 4.34 140 120
72-43 72 74.74 1,072 684.40 1342 21,818.36 12.52 338 347
72-44 72 75.03 1,077 225.28 249.85 21,74449 7517 279 293
72-45 72 74.83 1,057 168.00 81.76 21,707.70 26.73 264 314
72-46 72 7456 423 6.94 1.91 12.56 1.96 49 49
72-47 72 75.31 431 11.33 7.96 88.53 11.41 92 101

266 | Appendix

Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
72-48 72 7444 215 2.05 0.88 2.42 0.88 21 21
72-49 72 74.60 411 6.59 251 15.92 244 125 124

72-5 72 7375 211 2.64 1.85 1.71 1.79 42 42
72-6 72 73.03 91 0.72 0.38 2.39 0.39 8 8
72-7 72 7328 171 1.85 0.73 211 0.72 18 18
72-8 72 7353 191 4.60 2.27 6.05 2.62 41 42
729 72 72.38 55 0.39 0.31 0.47 0.30 4 4
75-0 75 77.14 23 0.14 0.12 0.11 0.13 4 4
75-1 75 7711 115 0.89 1.47 0.63 1.27 20 20
75-10 75 76.60 111 1.49 1.28 25.19 1.46 20 22
75-11 75 7693 231 4.21 5.07 2.78 4.75 40 42
75-12 75 76.71 223 2.63 3.83 1.76 3.13 40 41
75-13 75 76.00 103 0.86 0.81 0.51 0.69 0 2
75-14 75 76.64 183 1.93 0.72 1.83 0.75 22 22
75-15 75 76.39 203 1.78 0.69 1.60 0.72 42 42
75-16 75 76.87 507 36.40 32.39 3,236.87 13.39 130 127
75-17 75 7570 207 2.95 0.92 25.79 0.95 67 61
75-18 75 7647 407 10.62 217 761.38 2.15 145 124
75-19 75 76.84 457 25.14 2.50 177.09 2.52 126 128
75-2 75 76.56 55 0.34 0.36 0.27 0.32 0 0
75-20 75 75.69 107 1.13 0.46 3.02 0.46 11 12
75-21 75 76.61 257 27.30 3.62 379.81 3.01 62 62
75-22 75 76.96 557 6,096.11 56.27 21,855.43 35.75 90 123
75-23 75 7730 577 30,704.44 196.03 21,885.07 81.45 84 134
75-24 75 75.88 277 408.03 16.95 815.47 11.41 50 57
75-25 75 76.00 137 497 1.00 28.79 0.99 20 22
75-26 75 77.05 477 17.00 4765 21,67748 2530 104 109
75-27 75 76.28 427 37.55 4.27 1,220.29 4.34 141 141
75-28 75 75.92 47 6.38 0.21 15.84 0.23 6 6

A.2 Evaluation of Scheduling Design

Table A.13: Results for Benchmark 1 - SBP.

| 267

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
75-29 75 7626 227 10.83 1.20 156.75 1.24 69 69
75-3 75 76.82 95 1.53 0.45 1.68 0.45 20 20
75-30 75 7726 527 1,428.09 88.10 1,633.55 24.70 104 128
75-31 75 76.81 522 16.52 6.38 16.83 5.65 104 104
75-32 75 7629 222 2.79 0.88 30.04 091 61 61
75-33 75 76.74 422 6.45 1.55 250.90 1.60 53 52
75-34 75 77.05 472 77.76 26.58 198.26 11.42 124 127
75-35 75 7578 132 3.83 0.49 9.84 0.51 20 22
75-36 75 75.73 272 86.93 5.40 124.33 4.32 56 56
75-37 75 7719 572 201.68 44.73 3,071.85 34.97 54 58
75-38 75 76.54 552 113.37 16.35 65.00 16.03 104 120
75-39 75 76.24 252 4.78 292 63.26 2.29 3 4
75-4 75 76.47 53 0.39 0.33 0.24 0.32 0 1
75-40 75 76.82 452 16.23 1.72 21,699.25 1.75 104 104
75-41 75 76.38 502 16.90 9.04 22.61 7.58 12 9
75-42 75 7744 1,052 38.77 4.34 21,691.28 441 190 170
75-43 75 77.74 1,072 1,081.50 13.37 21,785.64 12.57 360 361
75-44 75 78.03 1,077 328.67 336.44 21,746.86 73.80 326 325
75-45 75 77.83 1,057 99.49 110.39 21,729.47 27.33 422 318
75-46 75 77.56 423 7.80 1.92 2,374.17 1.92 68 68
75-47 75 78.31 431 12.70 6.07 70.77 6.82 101 120
75-48 75 7744 215 1.96 0.86 2.09 0.89 31 32
75-49 75 77.60 411 6.56 2.63 12.97 2.62 140 132
75-5 75 76.75 211 2.67 2.29 1.74 221 42 42
75-6 75 76.03 91 0.75 0.39 1.47 0.40 8 9
75-7 75 76.28 171 1.58 0.74 1.87 0.75 19 20
75-8 75 76.53 191 5.90 242 11.32 2.74 40 42
75-9 75 75.38 55 0.45 0.32 0.37 0.32 4 4
78-0 78 80.14 23 0.15 0.13 0.11 0.13 4 4

268 | Appendix
Table A.13: Results for Benchmark 1 - SBP.
M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)

78-1 78 80.11 115 0.90 1.34 0.62 1.19 20 20
78-10 78 79.60 111 1.31 1.27 16.33 1.39 18 24
78-11 78 79.93 231 6.87 4.88 3.72 4.49 40 42
78-12 78 79.71 223 2.75 3.46 2.02 2.85 40 42
78-13 78 79.00 103 0.51 0.81 0.50 0.69 0 2

78-14 78 79.64 183 1.03 0.71 1.51 0.74 22 22
78-15 78 79.39 203 1.00 0.71 1.11 0.75 42 42
78-16 78 79.87 507 23.15 34.66 848.96 11.84 170 135
78-17 78 78.70 207 3.72 0.94 4.74 0.97 62 62
78-18 78 7947 407 8.14 2.33 152.20 2.29 136 133
78-19 78 79.84 457 39.27 2.54 269.60 2.56 155 151
78-2 78 79.56 55 0.35 0.34 0.25 0.33 0 0

78-20 78 78.69 107 4.95 0.44 12.34 0.45 16 16
78-21 78 79.61 257 113.96 3.67 120.57 3.02 67 67
78-22 78 79.96 557 50.15 49.93 34.69 24.67 105 110
78-23 78 80.30 577 36,130.01 235.34 21,828.82 76.06 93 143
78-24 78 78.88 277 621.56 24.43 958.80 13.98 46 58
78-25 78 79.00 137 4.02 1.10 34.39 1.02 20 23
78-26 78 80.05 477 35.83 68.58 21,673.43 26.39 105 109
78-27 78 79.28 427 54.52 453 6,370.50 4.38 146 144
78-28 78 78.92 47 3.27 0.22 18.44 0.22 6 6

78-29 78 79.26 227 173.29 1.24 162.31 1.21 76 72
78-3 78 79.82 95 1.10 0.46 1.00 0.46 20 20
78-30 78 80.26 527 2,538.43 10196 21,849.86 28.54 134 134
78-31 78 79.81 522 12.57 6.69 14.08 5.31 104 105
78-32 78 79.29 222 3.25 0.92 9.59 0.91 61 61
78-33 78 79.74 422 9.76 1.73 21,629.85 1.63 74 72
78-34 78 80.05 472 29.99 10.24 208.47 12.40 167 148
78-35 78 78.78 132 415 0.51 6.35 0.52 20 23

A.2 Evaluation of Scheduling Design | 269
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
78-36 78 7873 272 113.08 6.60 52.49 498 57 59
78-37 78 80.19 572 1,838.12 70.52 637.88 34.82 57 123
78-38 78 79.54 552 118.30 19.14 163.47 13.37 128 127
78-39 78 79.24 252 3.61 2.94 11.82 2.29 3 5
78-4 78 7947 53 0.37 0.36 0.27 0.32 0 2
78-40 78 79.82 452 12.26 1.86 19.12 1.80 105 105
78-41 78 79.38 502 12.15 10.47 19.76 7.66 10 11
78-42 78 80.44 1,052 24.53 477 21,70941 446 180 174
78-43 78 80.74 1,072 1,294.96 16.12 21,799.97 13.58 374 384
78-44 78 81.03 1,077 986.14 460.32 21,756.65 65.98 324 345
78-45 78 80.83 1,057 95.94 1592 21,706.76 16.94 354 321
78-46 78 80.56 423 5.50 2.04 94.51 2.00 70 70
78-47 78 81.31 431 9.31 5.83 320.12 5.88 120 124
78-48 78 80.44 215 1.68 0.89 2.00 0.89 40 34
78-49 78 80.60 411 5.44 2.90 8.90 2.75 143 140

78-5 78 79.75 211 1.87 1.67 1.61 1.56 42 42
78-6 78 79.03 91 0.70 0.41 0.92 0.41 8 10
78-7 78 79.28 171 1.86 0.75 2.78 0.75 26 26
78-8 78 79.53 191 3.97 2.01 3.65 2.25 44 41
78-9 78 7838 55 0.57 0.36 0.42 0.31 4 6

81-0 81 83.14 23 0.14 0.13 0.11 0.14 4 4

81-1 81 83.11 115 0.89 1.32 0.60 1.20 20 20
81-10 81 82.60 111 5.51 1.31 13.23 1.18 23 26
81-11 81 8293 231 3.30 5.84 2.21 4.73 42 42
81-12 81 82.71 223 2.20 3.67 1.74 2.95 42 42
81-13 81 82.00 103 0.71 0.78 0.50 0.67 0 2

81-14 81 82.64 183 1.59 0.76 1.99 0.79 22 24
81-15 81 8239 203 1.75 0.78 1.18 0.72 42 42
81-16 81 82.87 507 47.40 28.15 1,362.30 12.65 143 145

270 | Appendix
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
81-17 81 81.70 207 3.85 1.01 4.59 1.00 70 67
81-18 81 82.47 407 8.08 2.62 106.05 241 145 143
81-19 81 82.84 457 21.99 2.68 215.93 2.65 160 158
81-2 81 8256 55 0.25 0.36 0.26 0.34 0 0
81-20 81 81.69 107 0.89 0.46 2.96 0.47 18 17
81-21 81 82.61 257 27.38 3.89 95.52 3.04 69 71
81-22 81 8296 557 2,095.11 101.08 833.07 30.62 129 138
81-23 81 83.30 577 22,632.67 252.83 21,888.24 86.10 100 148
81-24 81 81.88 277 983.25 22.76 723.93 14.03 54 63
81-25 81 82.00 137 7.58 1.11 41.32 0.99 20 23
81-26 81 83.05 477 17.73 45.35 367.64 24.26 118 111
81-27 81 82.28 427 14.80 4.49 240.13 4.43 151 154
81-28 81 81.92 47 1.33 0.22 3.69 0.21 6 6
81-29 81 82.26 227 7.15 1.21 272.35 1.21 73 75
81-3 81 8282 95 0.61 0.52 0.63 0.50 21 24
81-30 81 83.26 527 1,658.63 84.73 21,787.85 30.97 138 144
81-31 81 82.81 522 10.26 6.85 15.21 5.73 106 106
81-32 81 8229 222 3.67 0.85 10.14 0.91 62 62
81-33 81 82.74 422 8.21 1.71 744.20 1.61 73 75
81-34 81 83.05 472 31.27 28.94 101.92 12.39 154 154
81-35 81 81.78 132 2.43 0.49 2.09 0.50 20 23
81-36 81 81.73 272 17.19 6.64 131.98 4.96 68 63
81-37 81 83.19 572 2,175.76 101.81 1,088.14 37.64 59 153
81-38 81 82.54 552 166.16 16.28 7,330.88 13.92 134 135
81-39 81 82.24 252 2.74 3.03 7.22 2.27 5 5
81-4 81 82.47 53 0.27 0.35 0.32 0.32 0 2
81-40 81 82.82 452 9.56 2.13 17.47 1.91 106 106
81-41 81 82.38 502 16.08 10.29 17.42 7.66 16 13
81-42 81 83.44 1,052 30.00 4.58 21,675.04 449 243 225

A.2 Evaluation of Scheduling Design | 271
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
81-43 81 83.74 1,072 826.35 1535 21,851.36 13.24 392 401
81-44 81 84.03 1,077 431.89 392.89 21,729.26 71.15 386 375
81-45 81 83.83 1,057 155.34 120.36 21,726.84 25.45 384 366
81-46 81 83.56 423 17.89 2.23 74.38 2.13 90 90
81-47 81 8431 431 10.65 4.84 164.79 4.34 128 132
81-48 81 83.44 215 2.54 0.92 222 0.91 44 44
81-49 81 83.60 411 4.10 3.26 6.74 2.88 150 150
81-5 81 82.75 211 1.74 2.22 1.57 2.03 42 42
81-6 81 82.03 91 0.49 0.41 0.68 0.41 8 10
81-7 81 8228 171 1.13 0.77 1.79 0.78 26 28
81-8 81 82.53 191 4.23 1.43 9.04 1.40 44 45
81-9 81 81.38 55 0.38 0.33 0.42 0.31 4 6
84-0 84 86.14 23 0.15 0.13 0.11 0.13 4 4
84-1 84 86.11 115 0.63 1.31 0.55 1.14 20 20
84-10 84 85.60 111 49.00 1.28 26.88 1.38 26 28
84-11 84 8593 231 2.70 5.99 227 4.86 42 42
84-12 84 85.71 223 1.78 3.54 1.65 2.80 42 42
84-13 84 85.00 103 0.56 0.78 0.49 0.67 2 2
84-14 84 85.64 183 1.20 0.76 1.82 0.79 22 24
84-15 84 85.39 203 1.23 0.73 1.13 0.77 42 42
84-16 84 85.87 507 66.06 37.94 1,961.73 15.87 200 154
84-17 84 84.70 207 2.96 1.06 4.53 1.02 75 72
84-18 84 85.47 407 6.00 2.56 19.87 242 148 149
84-19 84 85.84 457 27.50 2.60 106.02 2.62 170 165
84-2 84 85.56 55 0.47 0.40 0.35 0.34 0 2
84-20 84 84.69 107 0.91 0.45 3.25 0.47 16 17
84-21 84 85.61 257 52.59 3.75 266.67 3.09 74 75
84-22 84 85.96 557 174.07 73.26 62.48 22.93 111 112
84-23 84 8630 577 19,84431 276.69 21,867.73 84.89 122 159

272 | Appendix
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
84-24 84 84.88 277 374.12 20.34 469.40 13.12 61 73
84-25 84 85.00 137 5.14 1.29 2.30 1.17 20 27
84-26 84 86.05 477 44.75 55,59 21,662.88 26.76 106 123
84-27 84 85.28 427 22.98 419 47.04 3.90 156 162
84-28 84 8492 47 0.87 0.23 2.10 0.26 6 6
84-29 84 85.26 227 43.79 1.24 118.95 1.25 87 80
84-3 84 8582 95 0.75 0.54 0.57 0.52 20 24
84-30 84 86.26 527 922.16 95.69 21,816.25 29.69 146 154
84-31 84 85.81 522 9.65 6.04 12.59 5.28 106 107
84-32 84 85.29 222 2.23 0.86 477.83 0.85 64 63
84-33 84 85.74 422 23.93 1.67 45.01 1.64 95 95
84-34 84 86.05 472 29.06 7.31 61.29 6.88 167 160
84-35 84 84.78 132 1.46 0.49 1.90 0.52 20 23
84-36 84 84.73 272 31.70 6.12 39.60 5.05 73 67
84-37 84 86.19 572 2,213.53 68.54 1,787.54 3476 61 154
84-38 84 85.54 552 23.07 42.14 440.61 12.49 146 144
84-39 84 8524 252 3.98 3.04 25.73 231 5 7
84-4 84 8547 53 0.39 0.36 0.24 0.32 0 2
84-40 84 85.82 452 6.91 2.10 5.49 2.02 156 153
84-41 84 85.38 502 8.97 10.07 335.88 7.73 17 17
84-42 84 86.44 1,052 26.77 4.75 21,670.62 4.68 246 232
84-43 84 86.74 1,072 669.67 7.18 21,794.73 7.00 422 428
84-44 84 87.03 1,077 1,016.56 550.07 21,763.85 72.17 383 396
84-45 84 86.83 1,057 280.15 22497 21,742.73 28.48 369 374
84-46 84 86.56 423 14.99 1.77 157.82 1.69 100 95
84-47 84 87.31 431 8.73 5.42 430.19 4.85 138 142
84-48 84 86.44 215 2.43 1.01 2.18 1.03 45 46
84-49 84 86.60 411 3.66 3.38 4.95 3.16 160 155
84-5 84 85.75 211 8.92 2.81 27.86 2.34 57 60

A.2 Evaluation of Scheduling Design | 273
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
84-6 84 85.03 91 0.54 0.41 1.65 0.42 17 16
84-7 84 85.28 171 1.26 0.78 2.46 0.78 36 34
84-8 84 85.53 191 2.56 2.36 2.56 2.52 47 48
84-9 84 8438 55 0.28 0.27 0.38 0.29 4 5
87-0 87 89.14 23 0.10 0.13 0.12 0.14 4 4
87-1 87 89.11 115 0.67 1.44 0.59 1.24 20 20
87-10 87 88.60 111 11.97 1.00 57.94 0.87 30 32
87-11 87 88.93 231 216.57 8.03 233.13 591 53 58
87-12 87 88.71 223 2.31 3.79 1.68 3.10 42 43
87-13 87 88.00 103 2.35 0.71 1.05 0.61 2 6
87-14 87 88.64 183 147 0.75 1.48 0.74 22 25
87-15 87 88.39 203 1.53 0.75 1.53 0.73 44 44
87-16 87 88.87 507 12.66 6.11 147.27 5.26 120 119
87-17 87 87.70 207 2.64 1.09 5.21 1.04 76 77
87-18 87 88.47 407 6.58 2.90 7.88 2.65 159 159
87-19 87 88.84 457 15.69 2.58 187.86 2.58 184 172
87-2 87 88.56 55 0.47 0.27 0.28 0.27 0 2
87-20 87 87.69 107 1.20 0.49 8.86 0.49 22 22
87-21 87 88.61 257 32.79 3.84 333.49 3.04 79 80
87-22 87 88.96 557 1,572.25 11451 6,240.13 28.01 155 155
87-23 87 89.30 577 12,747.09 207.09 21,941.38 80.78 135 163
87-24 87 87.88 277 613.91 52.35 338.80 10.25 68 73
87-25 87 88.00 137 53.30 0.95 1.98 0.95 20 35
87-26 87 89.06 477 12.45 44.57 11.90 23.62 154 159
87-27 87 88.28 427 88.61 3.65 99.49 3.54 165 170
87-28 87 87.92 47 0.26 0.24 1.94 0.24 6 7
87-29 87 88.26 227 25.54 1.21 138.08 1.25 83 83
87-3 87 88.82 95 0.45 0.49 0.40 0.50 30 30
87-30 87 89.26 527 1,031.14 116.15 21,783.63 28.91 158 164

274 | Appendix

Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
87-31 87 88.81 522 10.92 7.53 25.81 6.33 110 109
87-32 87 88.29 222 2.34 0.86 8.47 0.92 65 63
87-33 87 88.74 422 22.62 1.69 722.88 1.71 104 99
87-34 87 89.05 472 72.24 5.38 58.55 5.52 190 173
87-35 87 87.78 132 1.18 0.52 2.04 0.57 21 32
87-36 87 87.73 272 8.11 4.20 144.11 3.51 73 73

87-37 87 89.19 572 3,069.60 77.60 3,831.48 34.13 134 146
87-38 87 88.54 552 142.18 43.27 759.07 11.97 154 154

87-39 87 88.24 252 2.78 0.85 13.06 0.88 7 9
87-4 87 88.47 53 0.31 0.24 0.23 0.25 0 2
87-40 87 88.82 452 5.81 2.06 5.36 1.93 154 154
87-41 87 88.38 502 13.36 1.74 22.49 1.77 20 11
87-42 87 89.44 1,052 30.80 5.31 21,668.95 5.13 295 286

87-43 87 89.74 1,072 1,087.19 7.12 21,803.58 6.94 460 451
87-44 87 90.03 1,077 782.96 371.93 466.52 68.21 430 427
87-45 87 89.83 1,057 198.20 146.30 266.22 18.30 445 422

87-46 87 89.56 423 9.54 1.78 1,182.33 1.79 120 116
87-47 87 90.31 431 50.89 3.71 49.39 3.65 156 166
87-48 87 89.44 215 5.72 1.25 1.86 1.20 54 58
87-49 87 89.60 411 3.63 3.74 4.99 3.51 178 172
87-5 87 88.75 211 1.83 2.20 2.77 1.97 44 44
87-6 87 88.03 91 0.80 0.42 1.32 0.46 16 18
87-7 87 88.28 171 2.25 0.94 1.82 0.88 34 35
87-8 87 88.53 191 1.94 251 1.71 2.18 60 62
87-9 87 87.38 55 0.31 0.26 0.28 0.25 12 12
90-0 90 92.14 23 0.13 0.13 0.10 0.13 4 4

90-1 90 9211 115 0.67 1.60 0.56 1.35 20 21

90-10 90 91.60 111 134.54 0.97 22.81 0.87 30 34
90-11 90 9193 231 5.09 6.75 3.60 5.54 44 46

A.2 Evaluation of Scheduling Design | 275
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
90-12 90 91.71 223 14.75 5.07 747 3.96 64 66
90-13 90 91.00 103 0.57 0.41 0.40 0.39 22 22
90-14 90 91.64 183 1.01 0.72 0.76 0.73 62 62
90-15 90 91.39 203 1.27 0.87 1.50 0.75 45 45
90-16 90 91.87 507 21.96 13.21 206.00 10.94 178 175
90-17 90 90.70 207 2.29 1.11 411 1.07 84 82
90-18 90 9147 407 5.52 3.36 7.35 3.02 190 169
90-19 90 91.84 457 35.14 2.63 143.38 2.63 192 180

90-2 90 9156 55 0.23 0.28 0.26 0.36 10 10
90-20 90 90.69 107 1.88 0.50 5.38 0.50 27 27
90-21 90 91.61 257 57.82 3.77 62.50 3.10 82 86
90-22 90 9196 557 78.82 93.83 185.47 23.42 121 123
90-23 90 9230 577 155,020.99 268.63 21,994.42 8292 149 179
90-24 90 90.88 277 815.80 40.07 762.04 6.45 80 83
90-25 90 91.00 137 1.41 1.04 2.25 1.01 22 43
90-26 90 92.05 477 10.83 75.80 18.33 2297 162 161
90-27 920 91.28 427 10.56 3.56 44 .40 3.37 170 164
90-28 90 90.92 47 1.66 0.23 0.78 0.23 11 11
90-29 90 91.26 227 26.04 1.49 70.59 1.26 93 87

90-3 90 91.82 9% 0.47 0.53 0.33 0.51 30 30
90-30 90 9226 527 1,536.60 13144 1,500.38 27.94 180 178
90-31 90 91.81 522 9.65 7.87 23.20 6.24 112 113
90-32 90 9129 222 1.60 0.86 1.84 0.86 82 82
90-33 90 91.74 422 18.13 1.68 141.10 1.65 126 121
90-34 90 92.05 472 91.84 4.99 237.94 4.79 190 180
90-35 90 90.78 132 3.99 0.53 1.53 0.53 41 42
90-36 90 90.73 272 43.95 3.81 281.38 3.11 77 83
90-37 90 9219 572 18.99 47.29 40.11 26.94 112 114
90-38 90 9154 552 104.66 41.35 32.18 11.77 173 166

276 | Appendix
Table A.13: Results for Benchmark 1 - SBP.
M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)

90-39 90 9124 252 2.57 0.95 2.72 0.96 58 55
90-4 90 9147 53 0.23 0.25 0.22 0.25 10 10
90-40 90 91.82 452 5.51 2.02 4.85 1.93 162 156
90-41 90 91.38 502 8.01 2.28 10.98 2.17 127 114
90-42 90 9244 1,052 28.91 6.74 21,67836 6.89 349 346
90-43 90 9274 1,072 1,222.04 7.28 1,011.30 7.16 478 474
90-44 90 93.03 1,077 1,469.17 479.80 5,681.90 58.82 435 454
90-45 90 92.83 1,057 130.24 147.47 636.63 42.12 443 434
90-46 90 9256 423 6.58 2.15 68.10 2.13 144 139
90-47 90 93.31 431 12.21 4.24 30.25 4.09 175 178
90-48 90 9244 215 1.19 1.59 2.16 1.46 67 66
90-49 90 92.60 411 2.86 3.83 3.83 3.57 180 180
90-5 90 91.75 211 21.11 2.89 96.89 2.29 66 70
90-6 90 91.03 91 0.57 0.42 0.72 0.42 18 18
90-7 90 91.28 171 1.19 0.91 2.19 0.89 48 44
90-8 90 9153 191 1.49 2.33 2.03 2.17 62 62
90-9 90 90.38 55 0.28 0.26 0.30 0.29 12 12
93-0 93 9514 23 0.12 0.11 0.13 0.12 4 4

93-1 93 9511 115 0.63 1.33 0.82 1.14 20 22
93-10 93 94.60 111 17.75 0.99 16.39 0.86 36 36
93-11 93 9493 231 584.37 1.48 322.69 1.46 61 NA
93-12 93 9471 223 2.15 3.86 4.47 2.99 48 49
93-13 93 94.00 103 0.47 0.39 0.55 0.38 25 24
93-14 93 9464 183 0.93 0.74 9.75 0.77 46 50
93-15 93 9439 203 1.03 0.76 1.79 0.76 51 48
93-16 93 94.87 507 76.16 14.95 224.50 11.20 208 186
93-17 93 93.70 207 2.00 1.24 242 1.24 86 87
93-18 93 9447 407 4.39 3.42 7.02 3.35 184 183
93-19 93 9484 457 36.39 2.63 50.03 2.63 205 189

A.2 Evaluation of Scheduling Design | 277
Table A.13: Results for Benchmark 1 - SBP.
M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)

93-2 93 9456 55 3.15 0.06 411 0.07 14 NA
93-20 93 93.69 107 0.75 0.51 3.27 0.51 41 33
93-21 93 9461 257 20.94 3.76 108.01 3.02 97 91
93-22 93 9496 557 16,376.34 8522 14,042.61 24.12 104 165
93-23 93 9530 577 1599386 23954 21,891.17 63.75 174 189
93-24 93 93.88 277 933.86 7.03 1,264.10 6.27 80 87
93-25 93 94.00 137 0.99 0.27 0.92 0.29 51 NA
93-26 93 95.05 477 24.29 56.48 49.74 20.82 166 169
93-27 93 94.28 427 15.31 3.25 79.99 3.11 190 188
93-28 93 93.92 47 2.70 0.24 1.83 0.22 11 12
93-29 93 9426 227 416.90 1.50 75.24 1.26 104 92
93-3 93 9482 95 0.42 0.52 0.31 0.49 30 30
93-30 93 9526 527 2,120.54 138.84 1,256.07 31.44 182 188
93-31 93 9481 522 12.02 6.00 18.75 5.74 132 119
93-32 93 9429 222 1.36 0.87 1.99 0.87 83 83
93-33 93 9474 422 3.96 2.00 436.07 2.02 177 173
93-34 93 95.05 472 66.34 3.79 110.20 3.71 199 189
93-35 93 93.78 132 0.70 0.17 0.70 0.18 51 NA
93-36 93 93.73 272 51.31 3.98 83.22 3.05 103 89
93-37 93 9519 572 2,667.91 18.66 11,288.74 15.99 167 NA
93-38 93 9454 552 81.39 4541 38.58 13.27 193 180
93-39 93 9424 252 2.48 0.95 2.79 0.97 61 58
93-4 93 94.47 53 0.29 0.21 0.23 0.22 12 12
93-40 93 9482 452 5.19 2.02 497 1.96 166 166
93-41 93 9438 502 8.55 2.28 11.63 2.15 131 122
93-42 93 95.44 1,052 57.99 52.32 239.39 17.29 468 457
93-43 93 95.74 1,072 106.62 7.57 171.90 7.10 519 496
93-44 93 96.03 1,077 1,00090 1,575.80 914.76 93.42 493 496
93-45 93 9583 1,057 153.42 342.23 126.56 45.80 501 490

278 | Appendix
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fits(s) Frps(s) Ons(s) Ofps(8) Pus(s) Prps(s)
93-46 93 9556 423 3.32 2.12 5.87 2.12 187 185
93-48 93 9544 215 0.96 0.86 1.44 0.89 90 91
93-49 93 95.60 411 1.95 2.19 2.36 2.16 192 196
93-5 93 9475 211 1.56 141 3.21 1.42 49 51
93-6 93 9403 91 0.54 0.45 0.99 0.44 27 26
93-7 93 9428 171 1.09 1.08 1.18 1.04 70 53
93-8 93 9453 191 2.57 1.56 4.96 1.55 65 66
93-9 93 9338 55 0.36 0.23 0.46 0.24 12 14
96-10 96 97.60 111 5.59 0.94 10.43 0.86 34 38
96-11 96 9793 231 62.59 2.08 39.12 2.07 73 78
96-12 96 97.71 223 8.48 1.18 2.51 1.21 64 67
96-13 96 97.00 103 0.52 0.39 0.42 0.41 26 27
96-14 96 97.64 183 0.98 0.71 0.84 0.75 78 70
96-15 96 9739 203 1.31 0.77 1.81 0.79 67 62
96-16 96 97.87 507 18.27 9.51 23.57 7.74 225 198
96-17 96 96.70 207 1.64 091 2.10 0.94 92 93
96-18 96 97.47 407 3.71 222 4.15 2.05 196 194
96-19 96 97.84 457 16.55 2.74 24.65 2.62 199 198
96-2 96 9756 55 1.58 0.06 0.73 0.08 19 NA
96-20 96 96.69 107 0.67 0.52 2.18 0.50 39 39
96-21 96 97.61 257 53.99 3.77 27.28 3.12 104 97
96-22 96 97.96 557 168.58 137.93 249.98 18.70 189 191
96-24 96 96.88 277 1,185.68 7.54 1,342.30 6.15 88 96
96-25 96 97.00 137 1.20 0.27 1.11 0.30 51 NA
96-26 96 98.05 477 133.82 1094 21,730.66 9.69 191 158
96-27 96 97.28 427 32.47 3.15 66.15 2.98 197 196
96-28 96 96.92 47 0.22 0.22 0.20 0.23 16 16
96-29 96 9726 227 24.78 1.22 35.78 1.23 100 97
96-3 96 9782 95 0.43 0.13 0.39 0.14 34 NA

A.2 Evaluation of Scheduling Design | 279
Table A.13: Results for Benchmark 1 - SBP.

M Uep(%) U(%) J Fyt5(s) Frps(s) Ots(s) Ofps(8) Pus(s) Prps(s)
96-31 96 97.81 522 12.96 4.45 34.29 4.26 181 182
96-32 96 9729 222 1.64 0.97 1.36 0.98 87 86
96-33 96 97.74 422 3.53 2.48 3.00 2.08 193 193
96-34 96 98.05 472 28.33 3.92 19.83 3.55 218 199
96-35 96 96.78 132 1.06 0.17 1.22 0.18 52 NA
96-36 96 96.73 272 65.57 3.81 54.64 3.14 103 95
96-38 96 9754 552 20.39 78.40 7.50 14.08 196 196
96-39 96 9724 252 2.33 0.98 3.34 0.95 70 67

96-4 96 97.47 53 0.21 0.21 0.27 0.22 14 15
96-40 96 97.82 452 4.67 2.34 4.21 2.24 188 187
96-41 96 97.38 502 9.22 2.80 12.70 2.67 162 155

96-5 96 97.75 211 1.47 1.38 4.10 1.35 68 71

96-6 96 97.03 91 0.43 0.38 0.32 0.39 34 34

96-7 96 9728 171 0.85 0.74 1.01 0.75 70 70

96-8 96 9753 191 1.77 1.23 1.55 1.22 77 74

96-9 96 96.38 55 0.26 0.24 0.34 0.24 12 16

99-9 99 99.38 55 0.25 0.07 0.32 0.08 22 NA

Table A.14: Results for Benchmark 1 - PTP.

M Up(%) U(%)] Fiss(s) Frps(s) Ous(s) Ofps(8) Pus(s) Prps(s)
30-0 30 3493 13 0.08 0.11 0.10 0.13 0 0
30-1 30 40.08 59 0.44 0.70 0.46 0.70 0 0
30-2 30 43.01 29 0.16 0.19 0.17 0.18 0 0
30-3 30 36.63 49 0.25 0.29 0.28 0.31 0 0
30-4 30 39.05 28 0.17 0.18 0.19 0.21 0 0
30-5 30 4286 107 0.91 1.59 2.21 1.46 4 8
30-6 30 3695 47 0.27 0.31 0.31 0.32 0 0
30-7 30 3342 87 0.67 0.64 0.69 0.65 0 1
30-8 30 4718 97 0.84 1.10 0.91 1.12 0 1

280 | Appendix

Table A.14: Results for Benchmark 1 - PTP.

M Ucp(%) Ur(%) J Fi5(s) Frps(s) Otts(s) Ofps(s) Pus(s) Prps(s)

30-9 30 3697 29 0.17 0.19 0.19 0.21 0 0
30-10 30 36.42 57 0.39 0.62 0.51 0.63 1 2
30-11 30 4099 117 1.46 2.52 1.90 2.57 0 1
30-12 30 3528 113 1.36 1.32 1.26 1.35 0 0
30-13 30 40.52 53 3.33 0.36 0.41 0.36 0 0
30-15 30 4430 103 0.69 1.13 0.90 1.04 0 1

30-16 30 35.38 508 12.52 31.58 130.20 17.29 34 35

30-17 30 3996 208 3.65 1.03 6.79 1.08 16 17
30-19 30 4124 458 13.99 9.47 172.95 8.61 37 41
30-20 30 39.86 108 0.83 0.84 0.90 0.88 0 1
30-21 30 4540 258 16.74 1.87 46.28 1.98 17 21
30-22 30 3730 558 11.83 61.75 32.01 34.03 4 7

30-23 30 47.08 578 995.42 231.54 888.23 77 .48 17 33

30-24 30 3494 278 7.35 25.56 11.43 12.43 6 11
30-25 30 42.83 138 2.50 1.74 1.95 1.79 0 11
30-26 30 3442 478 9.40 31.83 16.34 27.21 2 7
30-28 30 39.52 48 0.28 0.31 0.47 0.32 0 0

30-30 30 3719 528 21.01 59.75 1,809.08 35.78 17 41
30-31 30 36.02 523 12.93 29.59 28.73 17.44 3 3
30-34 30 41.03 473 11.04 20.24 21.60 15.67 25 32

30-35 30 3698 133 1.13 0.63 1.80 0.70 0 1
30-36 30 39.82 273 391 12.28 6.22 8.67 11 11
30-37 30 40.63 573 11.90 49.83 1947 26.53 2 3
30-39 30 3320 253 3.36 3.29 4.32 2.69 1 1
30-41 30 34.78 503 8.79 10.07 14.07 8.65 3 3
30-42 30 37.38 1,053 15.54 10.33 44.73 9.54 9 9
30-44 30 42.28 1,078 70.58 238.53 205.44 63.99 62 117
30-47 30 44.62 217 3.12 7.79 4.67 7.09 9 10

30-48 30 39.04 109 0.68 0.66 0.71 0.69 0 1

A.2 Evaluation of Scheduling Design | 281
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
33-0 33 3793 13 0.08 0.11 0.12 0.12 0 0
33-1 33 43.08 59 0.44 0.67 0.52 0.68 0 0
33-2 33 46.01 29 0.15 0.18 0.18 0.23 0 0
33-3 33 39.63 49 0.25 0.34 0.28 0.34 0 1
33-4 33 4205 28 0.17 0.19 0.18 0.20 0 0
33-5 33 4586 107 1.90 1.43 1.15 1.45 0 1
33-6 33 39.95 47 0.36 0.31 0.39 0.32 0 0
33-7 33 36.42 87 1.01 0.62 0.65 0.64 0 1
33-8 33 50.18 97 0.91 1.11 1.06 1.13 0 1
33-9 33 3997 29 0.17 0.19 0.25 0.22 0 0
33-10 33 3942 57 0.55 0.64 0.85 0.67 1 2
33-11 33 4399 117 1.46 2.51 1.71 2.62 0 1
33-12 33 38.28 113 1.07 1.36 1.27 1.38 0 1
33-13 33 4352 53 0.39 0.43 0.32 0.42 0 1
33-15 33 4730 103 0.68 1.13 0.89 1.03 0 1
33-16 33 38.38 508 443.96 33.08 1,186.64 17.71 45 43
33-17 33 4296 208 5.89 1.14 51.20 1.18 21 21
33-19 33 4424 458 17.23 9.54 4,700.03 8.82 47 49
33-20 33 4286 108 1.48 0.84 1.09 0.87 0 1
33-21 33 4840 258 8.59 1.90 1,122.38 1.94 22 23
33-22 33 40.30 558 12.24 60.45 4,265.73 29.88 26 28
33-23 33 50.08 578 614.40 164.29 1,234.28 82.56 17 43
33-24 33 3794 278 61.48 21.26 3,772.81 11.86 6 11
33-25 33 4583 138 2.25 1.71 2.06 2.14 0 11
33-26 33 3742 478 11.89 30.93 16.17 25.58 2 8
33-28 33 4252 48 0.29 0.31 0.32 0.33 0 0
33-30 33 40.19 528 161.08 76.45 939.69 31.85 24 43
33-31 33 39.02 523 18.43 31.81 28.07 15.60 3 3
33-34 33 4403 473 15.36 21.79 176.02 15.11 44 44

282 | Appendix

Table A.14: Results for Benchmark 1 - PTP.

M Ucp(%) Ur(%) J Fi5(s) Frps(s) Otts(s) Ofps(s) Pus(s) Prps(s)

33-35 33 3998 133 1.12 0.62 1.67 0.64 0 1
33-36 33 42.82 273 4.53 11.10 11.95 8.54 12 13
33-37 33 43.63 573 279.80 53.07 22.75 35.66 2 12
33-39 33 36.20 253 3.55 3.14 4.45 2.58 1 2
33-41 33 37.78 503 8.93 10.19 14.51 8.61 4 4
33-42 33 40.38 1,053 15.65 10.41 41.57 10.10 9 9

33-44 33 4528 1,078 56.49 222.23 356.63 47.95 124 122

33-47 33 47.62 217 3.44 7.71 5.76 6.78 10 19
33-48 33 42.04 109 0.71 0.65 0.84 0.66 0 1
36-0 36 40.93 13 0.09 0.11 0.10 0.12 0 0
36-1 36 46.08 59 0.43 0.68 0.49 0.67 0 0
36-2 36 49.01 29 0.16 0.19 0.17 0.19 0 0
36-3 36 42.63 49 0.26 0.28 0.33 0.30 0 0
36-4 36 45.05 28 0.15 0.19 0.18 0.21 0 0
36-5 36 48.86 107 0.97 1.44 1.33 1.51 0 1
36-6 36 42.95 47 0.33 0.31 0.37 0.33 0 0
36-7 36 39.42 87 0.90 0.63 0.76 0.65 0 1
36-8 36 53.18 97 0.84 1.00 4.45 1.02 10 10
36-9 36 4297 29 0.17 0.19 0.26 0.20 0 0
36-10 36 42.42 57 0.53 0.76 0.67 0.78 3 3
36-11 36 4699 117 1.64 2.51 1.60 2.66 0 1
36-12 36 41.28 113 1.17 1.33 1.09 1.38 0 1
36-13 36 46.52 53 0.31 0.44 0.32 0.44 0 1
36-15 36 5030 103 0.79 1.15 0.74 1.04 0 1

36-16 36 41.38 508 29.68 26.47 415.20 17.58 49 49
36-17 36 4596 208 3.48 1.06 9.44 1.08 21 22
36-19 36 47.24 458 65.90 9.70 206.19 8.66 46 52
36-20 36 45.86 108 1.41 0.82 1.07 0.84 0 1

36-21 36 51.40 258 4.22 2.02 135.93 2.01 25 29

A.2 Evaluation of Scheduling Design | 283
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
36-22 36 4330 558 40.95 62.11 39.58 30.67 3 8
36-23 36 53.08 578 1,27624 177.17 3,98436 80.61 23 48
36-24 36 4094 278 14.25 20.40 195221 1141 14 16
36-25 36 48.83 138 2.02 1.73 2.06 2.10 0 11
36-26 36 4042 478 22.02 37.27 16.75 25.40 2 5
36-28 36 4552 48 0.28 0.32 0.37 0.33 0 0
36-30 36 4319 528 33.02 68.62 1,78520 34.42 43 48
36-31 36 42.02 523 12.50 34.03 15.01 19.65 3 3
36-34 36 47.03 473 4418 24.14 111.69 15.44 48 48
36-35 36 4298 133 1.13 0.62 1.51 0.64 0 2
36-36 36 4582 273 3.81 11.12 57.46 8.45 14 14
36-37 36 46.63 573 36.51 61.83 23.09 33.97 2 14
36-39 36 39.20 253 3.04 3.15 4.44 2.60 1 2
36-41 36 40.78 503 9.81 10.96 14.72 9.40 4 4
36-42 36 43.38 1,053 16.97 8.58 47.71 7.96 12 11
36-44 36 4828 1,078 43.11 322.01 358.15 60.58 119 124
36-47 36 50.62 217 2.99 7.41 5.26 7.27 19 19
36-48 36 45.04 109 0.63 0.65 0.81 0.68 0 1

39-0 39 4393 13 0.10 0.11 0.09 0.13 0 0
39-1 39 49.08 59 0.39 0.67 0.47 0.69 0 0
39-2 39 5201 29 0.15 0.18 0.17 0.19 0 0
39-3 39 4563 49 0.25 0.28 0.29 0.28 5 5
39-4 39 48.05 28 0.15 0.19 0.17 0.20 0 0
39-5 39 51.86 107 0.95 147 1.21 1.53 0 1
39-6 39 4595 47 0.31 0.31 0.37 0.33 0 0
39-7 39 4242 87 0.86 0.62 0.67 0.64 0 1
39-9 39 4597 29 0.17 0.19 0.20 0.21 0 0
39-10 39 4542 57 0.82 0.83 0.97 0.85 2 3
39-11 39 4999 117 1.32 2.44 3.35 2.70 4 6

284 | Appendix
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fyts(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
39-12 39 4428 113 1.09 1.31 1.34 1.40 0 1
39-13 39 4952 53 0.29 0.43 0.41 0.42 0 0
39-15 39 53.30 103 0.99 1.16 0.90 1.04 0 1
39-16 39 4438 508 2891 29.14 14.76 17.90 3 8
39-17 39 4896 208 5.36 1.13 41.23 1.18 26 26
39-19 39 50.24 458 19.40 9.67 117.09 8.78 53 59
39-20 39 48.86 108 0.82 0.83 0.92 0.85 0 1
39-21 39 5440 258 7.58 2.11 686.48 2.10 25 31
39-23 39 56.08 578 607.75 305.15 347941 7343 45 53
39-24 39 4394 278 8.89 15.36 425.04 12.32 15 16
39-25 39 51.83 138 1.84 1.66 1.86 2.08 0 11
39-26 39 4342 478 13.45 32.84 15.23 21.69 2 14
39-28 39 48.52 48 0.27 0.32 0.75 0.32 0 0
39-30 39 46.19 528 26.64 72.61 427044 31.65 49 48
39-31 39 4502 523 11.67 35.50 18.74 18.57 3 4
39-34 39 50.03 473 18.84 24.63 501.12 15.30 50 51
39-35 39 4598 133 1.12 0.63 1.39 0.66 0 12
39-36 39 48.82 273 471 10.05 7.22 7.84 15 17
39-37 39 49.63 573 120.55 56.25 1,380.21 37.37 22 33
39-39 39 4220 253 3.10 3.12 3.63 2.53 1 2
39-41 39 43.78 503 13.32 10.17 13.40 8.54 4 4
39-42 39 46.38 1,053 15.77 5.16 41.88 5.21 9 11
39-44 39 51.28 1,078 71.14 34948 21,750.05 54.62 119 167
39-47 39 53.62 217 2.95 7.29 5.64 6.63 19 24
39-48 39 48.04 109 0.68 0.60 0.89 0.64 0 1

42-0 42 4693 13 0.08 0.11 0.11 0.13 0 0
42-1 42 5208 59 0.38 0.67 0.51 0.68 0 0
42-2 42 55.01 29 0.18 0.20 0.18 0.19 0 0
42-3 42 48.63 49 0.26 0.25 0.30 0.29 5 5

A.2 Evaluation of Scheduling Design | 285
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
42-4 42 51.05 28 0.17 0.19 0.18 0.20 0 0
42-5 42 5486 107 0.93 1.46 0.99 1.50 0 1
42-6 42 4895 47 0.29 0.31 0.36 0.33 0 0
42-7 42 4542 87 0.81 0.62 0.75 0.63 0 1
42-8 42 59.18 97 0.85 0.97 3.17 1.00 10 11
42-9 42 4897 29 0.27 0.19 0.25 0.19 0 0
42-10 42 4842 57 2.44 0.58 0.55 0.62 2 3
42-11 42 5299 117 1.34 2.46 1.59 2.62 0 1
42-12 42 4728 113 1.13 1.34 1.29 1.36 0 1
42-13 42 52.52 53 0.29 0.41 0.32 0.39 0 1
42-15 42 56.30 103 0.70 1.13 0.88 1.04 0 1
42-16 42 47.38 508 85.83 33.66 1,99822 1743 57 60
42-17 42 5196 208 3.29 1.06 6.93 1.09 26 27
42-19 42 53.24 458 16.23 9.78 374.36 9.05 58 63
42-20 42 51.86 108 0.83 0.83 1.01 0.85 0 1
42-21 42 57.40 258 3.41 1.67 899.24 1.70 32 33
42-22 42 4930 558 216.69 45.53 595.97 27.06 4 9
42-23 42 59.08 578 1,409.54 260.17 4,62476 78.95 49 55
42-24 42 4694 278 41.07 17.18 464.64 12.10 11 17
42-25 42 54.83 138 1.53 1.75 2.06 1.78 0 15
42-26 42 46.42 478 26.02 47.26 52.51 28.60 52 53
42-28 42 51.52 48 0.28 0.32 0.34 0.32 0 0
42-30 42 49.19 528 47.16 83.37 1,443.47 32.16 47 54
42-31 42 48.02 523 12.24 28.29 1,127.42 17.84 3 4
42-34 42 53.03 473 29.08 20.59 94.42 15.07 53 55
42-35 42 4898 133 1.12 0.63 1.19 0.66 0 12
42-36 42 51.82 273 8.86 9.40 33.69 7.30 17 18
42-37 42 52.63 573 71.42 55.66 179.17 27.82 3 5
42-39 42 4520 253 3.05 3.14 4.73 2.55 1 2

286 | Appendix

Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fyts(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
42-41 42 46.78 503 11.26 2.31 13.86 2.31 4 4
42-42 42 49.38 1,053 15.66 5.12 66.33 513 11 60
42-44 42 5428 1,078 164.79 318.00 3,477.09 61.63 169 169
42-47 42 56.62 217 2.95 7.67 5.45 4.55 23 24
42-48 42 51.04 109 0.62 0.59 0.93 0.62 0 5

45-0 45 49.93 13 0.08 0.11 0.10 0.12 0 0
45-1 45 55.08 59 0.39 0.60 0.38 0.62 0 0
45-2 45 58.01 29 0.17 0.18 0.18 0.19 0 0
45-3 45 51.63 49 0.25 0.26 0.30 0.28 5 5
45-4 45 54.05 28 0.17 0.19 0.16 0.19 0 0
45-5 45 57.86 107 0.90 1.48 1.01 1.51 0 1
45-6 45 51.95 47 0.29 0.32 0.31 0.33 0 0
45-7 45 48.42 87 0.59 0.43 0.68 0.45 0 0
45-9 45 51.97 29 0.25 0.19 0.26 0.21 0 0
45-10 45 51.42 57 0.36 0.61 0.70 0.62 4 4
45-11 45 55.99 117 1.88 241 3.40 2.50 4 7
45-12 45 50.28 113 1.01 1.34 1.24 1.36 0 1
45-13 45 55.52 53 0.28 0.42 0.33 0.41 0 1
45-15 45 59.30 103 0.96 1.13 0.88 1.05 0 1
45-16 45 50.38 508 19.30 35.28 804.43 17.84 68 64
45-17 45 5496 208 6.55 1.21 32.79 1.18 31 31
45-19 45 56.24 458 17.40 8.93 4,774.66 8.11 67 71
45-20 45 54.86 108 0.81 0.85 1.08 0.86 0 1
45-21 45 60.40 258 26.57 1.67 592.78 1.71 38 35
45-23 45 62.08 578 2,261.17 200.57 1,772.08 99.78 50 69
45-24 45 4994 278 16.20 17.74 21.80 12.04 13 18
45-25 45 57.83 138 1.44 1.74 1.68 1.74 0 15
45-26 45 4942 478 54.52 43.01 131.66 24.26 52 52
45-28 45 54.52 48 0.27 0.31 0.36 0.33 0 0

A.2 Evaluation of Scheduling Design | 287
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
45-30 45 5219 528 161.68 62.08 1,142.13 32.58 54 59
45-31 45 51.02 523 12.65 29.73 266.55 18.26 3 5
45-34 45 56.03 473 38.35 26.46 132.01 15.83 61 67
45-35 45 5198 133 1.47 0.63 1.27 0.68 0 12
45-36 45 5482 273 10.86 10.31 19.83 8.22 19 28
45-37 45 55.63 573 94.94 60.71 2,051.39 36.57 23 34
45-39 45 4820 253 3.09 3.15 3.50 2.57 1 2
45-41 45 49.78 503 8.89 2.32 18.27 2.31 5 5
45-42 45 52.38 1,053 15.25 5.09 2,155.69 5.16 60 61
45-44 45 57.28 1,078 78.66 31449 21,756.45 72.39 179 175
45-47 45 59.62 217 2.98 7.57 12.64 4.11 24 26
45-48 45 54.04 109 0.62 0.58 0.98 0.61 5 5
48-0 48 5293 13 0.08 0.11 0.11 0.12 0 0
48-1 48 58.08 59 0.37 0.66 0.44 0.65 0 1
48-2 48 61.01 29 0.17 0.18 0.17 0.18 0 0
48-3 48 54.63 49 0.24 0.26 0.30 0.27 5 5
48-4 48 57.05 28 0.16 0.19 0.18 0.23 0 0
48-5 48 60.86 107 0.90 1.48 1.19 1.51 0 1
48-6 48 5495 47 0.27 0.31 0.30 0.33 0 0
48-7 48 5142 87 0.58 0.44 0.98 0.44 4 4
48-8 48 65.18 97 0.85 0.95 1.41 0.98 10 10
48-9 48 54.97 29 0.24 0.19 0.24 0.21 0 0
48-10 48 5442 57 5.53 0.67 5.03 0.65 3 5
48-11 48 58.99 117 1.27 2.43 1.74 2.52 0 2
48-12 48 53.28 113 1.24 1.34 1.46 1.37 0 1
48-13 48 58.52 53 0.28 0.41 0.34 0.42 0 1
48-15 48 62.30 103 0.67 1.12 0.90 1.04 0 1
48-16 48 53.38 508 30.67 26.73 21,766.88 17.52 80 71
48-17 48 5796 208 2.50 1.15 6.86 1.25 31 32

288 | Appendix
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fyts(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
48-19 48 59.24 458 23.12 8.64 326.93 7.76 75 76
48-20 48 57.86 108 0.80 0.51 413 0.54 5 6
48-21 48 63.40 258 33.01 1.65 365.83 1.68 42 41
48-22 48 5530 558 82.15 53.44 4427 30.96 3 9
48-23 48 65.08 578 2,58495 31260 2,071.08 84.33 49 70
48-24 48 5294 278 38.19 17.31 1,683.18 12.44 17 27
48-25 48 60.83 138 1.48 1.57 1.54 1.59 0 20
48-26 48 5242 478 19.04 36.66 155.78 24.96 52 58
48-28 48 5752 48 1.66 0.31 0.34 0.32 0 0
48-30 48 5519 528 129.79 10349 1,362.55 33.59 53 63
48-31 48 54.02 523 15.30 23.61 303.08 18.55 3 5
48-34 48 59.03 473 15.83 26.05 97.04 16.86 67 71
48-35 48 5498 133 1.37 0.63 1.54 0.64 0 13
48-36 48 57.82 273 8.75 15.92 16.89 8.43 22 30
48-37 48 58.63 573 211.17 59.52 54.40 4147 4 53
48-39 48 51.20 253 3.00 3.20 3.81 2.61 1 2
48-41 48 52.78 503 8.93 2.31 12.94 2.38 6 5
48-42 48 55.38 1,053 14.79 5.10 530.49 5.07 64 62
48-44 48 60.28 1,078 135.34 504.10 729.38 78.79 180 215
48-47 48 62.62 217 292 8.30 9.77 411 28 30
48-48 48 57.04 109 0.62 0.51 0.77 0.54 5 6

51-0 51 5593 13 0.08 0.11 0.13 0.13 0 0
51-1 51 61.08 59 0.36 0.66 0.44 0.67 0 0
51-2 51 64.01 29 0.17 0.18 0.21 0.20 0 0
51-3 51 57.63 49 0.24 0.26 0.30 0.27 5 5
51-4 51 60.05 28 0.16 0.19 0.17 0.20 0 0
51-5 51 63.86 107 0.90 1.49 1.02 1.50 0 4
51-6 51 5795 47 0.40 0.28 0.37 0.29 0 1
51-7 51 5442 87 0.57 0.42 1.22 0.45 4 5

A.2 Evaluation of Scheduling Design | 289
Table A.14: Results for Benchmark 1 - PTP.
M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
51-9 51 5797 29 0.23 0.19 0.25 0.21 0 0
51-10 51 57.42 57 1.11 0.75 1.64 0.71 3 6
51-11 51 61.99 117 11.66 2.64 11.67 3.01 4 18
51-12 51 56.28 113 0.97 1.35 1.20 1.35 0 1
51-13 51 61.52 53 0.29 0.32 0.31 0.34 0 1
51-15 51 65.30 103 0.67 1.14 0.85 1.09 0 1
51-16 51 56.38 508 36.43 34.74 896.98 15.41 76 76
51-17 51 60.96 208 4.50 1.15 17.17 1.16 36 37
51-19 51 62.24 458 16.64 8.68 414.02 7.77 81 86
51-20 51 60.86 108 0.88 0.51 9.41 0.53 6 6
51-23 51 68.08 578 2,189.57 20243 693757 74.06 61 83
51-24 51 5594 278 21.26 14.89 426.91 13.13 16 28
51-25 51 63.83 138 1.42 1.54 1.55 1.60 0 21
51-26 51 55.42 478 15.55 44.67 32.62 28.56 52 57
51-28 51 60.52 48 1.05 0.32 0.33 0.33 0 0
51-30 51 58.19 528 284.43 113.53 1,01848 35.51 60 79
51-31 51 57.02 523 13.37 14.54 25.88 18.37 3 5
51-34 51 62.03 473 13.61 23.68 80.90 15.31 67 76
51-35 51 5798 133 1.27 0.61 1.67 0.62 0 13
51-36 51 60.82 273 15.07 13.98 19.41 9.14 25 33
51-37 51 61.63 573 1,180.85 68.57 3,389.24 40.87 23 93
51-39 51 5420 253 3.82 3.16 4.11 2.57 1 2
51-41 51 55.78 503 10.94 2.22 15.52 2.30 8 5
51-42 51 58.38 1,053 14.74 4.96 2,041.26 5.05 63 63
51-44 51 63.28 1,078 207.13 391.72 21,765.15 77.21 223 225
51-47 51 65.62 217 2.86 4.31 9.11 4.66 28 30
51-48 51 60.04 109 0.62 0.53 0.79 0.55 5 6
54-0 54 5893 13 0.08 0.11 0.10 0.12 0 0
54-1 54 64.08 59 0.33 0.64 0.53 0.66 0 2

290 | Appendix
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fyts(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
54-2 54 67.01 29 0.16 0.18 0.18 0.20 0 0
54-3 54 60.63 49 0.24 0.26 0.30 0.27 5 5
54-4 54 63.05 28 0.16 0.19 0.19 0.20 0 0
54-5 54 66.86 107 1.79 1.27 3.77 1.18 18 18
54-6 54 60.95 47 0.37 0.28 0.36 0.28 0 1
54-7 54 5742 87 0.57 0.43 1.07 0.44 4 5
54-8 54 7118 97 1.03 0.98 1.91 1.00 10 12
54-9 54 60.97 29 0.23 0.18 0.19 0.19 2 2
54-10 54 60.42 57 2.44 0.69 3.37 0.66 3 7
54-11 54 64.99 117 1.26 2.22 141 2.19 0 3
54-12 54 59.28 113 2.28 1.35 1.37 1.33 0 1
54-13 54 64.52 53 0.29 0.32 0.33 0.34 0 1
54-15 54 68.30 103 2.26 1.12 1.07 1.05 0 1
54-16 54 59.38 508 20.40 31.14 740.72 15.57 87 83
54-17 54 63.96 208 3.16 1.13 20.79 1.19 41 41
54-19 54 65.24 458 38.51 8.67 1,535.90 7.95 90 92
54-20 54 63.86 108 0.72 0.50 6.06 0.52 6 6
54-22 54 61.30 558 117.32 56.52 32.66 32.23 4 11
54-23 54 71.08 578 241778 31521 2,171.73 9423 62 84
54-24 54 58.94 278 178.07 18.74 1,021.23 1222 16 36
54-25 54 66.83 138 1.39 1.50 153.58 1.52 20 21
54-26 54 58.42 478 21.47 51.02 39.88 2447 53 58
54-28 54 63.52 48 0.65 0.32 0.33 0.34 0 0
54-30 54 61.19 528 1,102.21 97.91 954.39 31.06 63 88
54-31 54 60.02 523 18.77 32.62 20.07 17.01 4 5
54-34 54 65.03 473 11.95 19.02 19,065.26 15.62 76 81
54-35 54 60.98 133 1.07 0.61 1.17 0.63 0 22
54-36 54 63.82 273 27.85 7.47 10.26 8.61 38 36
54-37 54 64.63 573 215.71 82.86 136.32 35.44 5 26

A.2 Evaluation of Scheduling Design | 291
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
54-39 54 5720 253 3.06 3.19 3.99 2.57 2 3
54-42 54 61.38 1,053 15.90 513 332.23 5.28 63 64
54-44 54 66.28 1,078 139.53 409.73 21,723.35 75.75 226 231
54-47 54 68.62 217 2.83 4.20 55.28 415 42 43
54-48 54 63.04 109 0.63 0.52 1.06 0.54 5 5
57-0 57 6193 13 0.08 0.11 0.10 0.11 0 0
57-1 57 67.08 59 0.34 0.63 0.40 0.65 0 1
57-2 57 70.01 29 0.18 0.18 0.17 0.20 0 0
57-3 57 63.63 49 0.25 0.26 0.42 0.27 5 5
57-4 57 66.05 28 0.17 0.19 0.19 0.22 0 0
57-5 57 69.86 107 1.16 1.20 1.00 1.23 0 4

57-6 57 63.95 47 0.36 0.27 0.36 0.29 0 1
57-7 57 60.42 87 0.59 0.44 0.75 0.44 4 5
57-9 57 63.97 29 0.19 0.19 0.28 0.27 2 2
57-10 57 6342 57 1.90 0.76 3.53 0.74 6 8
57-11 57 67.99 117 4.01 2.56 11.62 2.92 11 19
57-12 57 6228 113 0.91 1.37 1.00 1.39 0 1
57-13 57 67.52 53 0.28 0.32 0.33 0.33 0 1
57-15 57 71.30 103 1.91 0.71 0.78 0.77 1 1
57-16 57 62.38 508 11.08 26.20 18.25 19.27 4 11
57-17 57 66.96 208 243 1.18 6.21 1.25 42 42
57-19 57 68.24 458 13.10 8.44 212.41 7.50 91 100
57-20 57 66.86 108 0.73 0.50 427 0.52 6 6
57-22 57 6430 558 1,65526 64.03 21,776.65 37.35 71 98
57-23 57 74.08 578 11,112.43 563.00 21,864.49 92.36 70 128
57-24 57 61.94 278 139.74 17.83 490.04 13.01 16 37
57-25 57 69.83 138 1.51 1.51 35.12 1.48 20 21
57-26 57 61.42 478 16.45 61.12 72.47 26.24 53 59
57-28 57 66.52 48 0.39 0.55 0.46 0.55 0 1

292 | Appendix

Table A.14: Results for Benchmark 1 - PTP.

M Ucp(%) Ur(%) J Fi5(s) Frps(s) Otts(s) Ofps(s) Pus(s) Prps(s)

57-30 57 64.19 528 661.50 73.44 7,60497 3043 68 89
57-31 57 63.02 523 14.39 9.22 23.25 9.27 4 25
57-34 57 68.03 473 21.58 33.17 132.90 14.86 79 93
57-35 57 6398 133 1.07 0.64 44.73 0.67 20 22
57-36 57 66.82 273 21.61 6.73 14.35 7.42 29 38

57-37 57 67.63 573 1,244.59 89.40 21,786.37 47.05 43 94
57-39 57 60.20 253 3.01 3.16 4.28 2.70 2 3
57-42 57 64.38 1,053 15.16 5.19 21,722.99 5.23 64 66
57-44 57 69.28 1,078 251.03 452.67 21,725.79 77.29 228 266

57-47 57 71.62 217 3.00 4.19 71.73 4.27 42 47
57-48 57 66.04 109 0.60 0.51 1.38 0.54 5 10
60-0 60 64.93 13 0.08 0.13 0.12 0.14 0 1
60-1 60 70.08 59 0.35 0.55 0.40 0.56 10 10
60-2 60 73.01 29 0.16 0.22 0.20 0.20 0 0
60-3 60 66.63 49 0.24 0.27 0.33 0.29 5 6
60-4 60 69.05 28 0.16 0.18 0.17 0.19 0 0
60-5 60 72.86 107 0.87 1.22 1.09 1.26 20 21
60-6 60 66.95 47 0.38 0.29 0.31 0.28 0 1
60-7 60 63.42 87 0.59 0.43 0.72 0.44 4 5
60-8 60 77.18 97 2.16 0.95 2.58 1.21 21 21
60-9 60 66.97 29 0.16 0.22 0.27 0.21 2 2
60-10 60 66.42 57 10.58 0.57 0.85 0.56 4 8
60-11 60 7099 117 3.06 2.10 1.52 2.49 2 20
60-12 60 65.28 113 1.13 1.33 1.03 1.35 0 1
60-13 60 70.52 53 0.28 0.32 0.32 0.34 0 1
60-15 60 7430 103 0.62 0.75 0.65 0.74 20 20

60-16 60 65.38 508 15.24 37.16 633.04 16.20 94 96
60-17 60 69.96 208 2.79 1.16 11.12 1.19 46 47
60-19 60 71.24 458 153.82 6.76 376.07 6.26 100 109

A.2 Evaluation of Scheduling Design | 293
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
60-20 60 69.86 108 0.71 0.50 2.47 0.53 6 6
60-22 60 67.30 558 117.41 56.11 83.69 35.88 7 56
60-23 60 77.08 578 16,040.18 380.03 21,959.01 90.71 80 134
60-24 60 64.94 278 235.04 21.58 1,206.14 13.77 22 41
60-25 60 72.83 138 1.39 1.52 24.62 1.90 20 21
60-26 60 64.42 478 21.11 56.29 35.24 24.87 54 59
60-28 60 69.52 48 0.27 0.50 0.32 0.50 0 1
60-30 60 6719 528 1,616.85 70.00 2,099.22 3450 70 98
60-31 60 66.02 523 11.36 12.85 298.50 19.44 6 6
60-34 60 71.03 473 48.11 24.20 124.80 15.12 102 103
60-35 60 66.98 133 1.05 0.62 20.71 0.63 20 23
60-36 60 69.82 273 31.57 7.85 98.74 5.87 52 48
60-37 60 70.63 573 59.59 6793 2,01049 4231 54 55
60-39 60 63.20 253 2.93 3.20 437 2.58 3 3
60-42 60 67.38 1,053 16.25 527 21,702.85 5.36 115 115
60-44 60 7228 1,078 158.89 616.66 21,741.23 83.72 282 289
60-47 60 74.62 217 2.74 422 36.29 4.89 49 51
60-48 60 69.04 109 0.64 0.51 1.12 0.56 10 11

63-0 63 6793 13 0.08 0.10 0.08 0.11 2 2
63-1 63 73.08 59 0.52 0.62 0.35 0.62 0 6
63-2 63 76.01 29 0.15 0.19 0.19 0.19 0 0
63-3 63 69.63 49 0.94 0.27 0.49 0.41 10 10
63-4 63 72.05 28 0.15 0.19 0.18 0.21 0 0
63-5 63 75.86 107 1.12 1.20 1.12 1.19 20 20
63-6 63 69.95 47 0.27 0.26 0.35 0.26 4 4
63-7 63 66.42 87 0.53 0.45 0.92 0.46 5 5
63-9 63 69.97 29 0.22 0.20 0.27 0.21 2 3
63-10 63 69.42 57 0.71 0.60 2.44 0.71 8 9
63-11 63 73.99 117 2.51 241 26.15 241 11 22

294 | Appendix
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fyts(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
63-12 63 68.28 113 0.86 1.25 0.90 1.26 20 10
63-15 63 77.30 103 0.59 0.70 0.76 0.68 21 21
63-16 63 68.38 508 8.93 39.59 16.16 18.00 104 104
63-17 63 7296 208 2.31 1.18 22.77 1.17 53 51
63-19 63 74.24 458 117.34 8.48 487.56 7.51 110 116
63-20 63 72.86 108 0.74 0.52 2.18 0.55 6 7
63-23 63 80.08 578 21,267.33 711.50 18,746.22 80.54 87 139
63-24 63 67.94 278 146.33 19.76 78.77 13.87 24 47
63-25 63 75.83 138 3.51 1.46 16.71 1.45 20 22
63-26 63 6742 478 16.16 48.81 27.68 29.01 54 60
63-28 63 72.52 48 0.27 0.49 0.42 0.49 0 1
63-30 63 70.19 528 688.58 7830 450136 27.64 98 103
63-31 63 69.02 523 9.31 8.96 12.98 8.73 103 103
63-34 63 74.03 473 24.82 32.11 123.35 16.25 107 118
63-36 63 72.82 273 291 5.63 129.56 443 50 51
63-37 63 73.63 573 9,575.36 76.23 2,169.68 39.11 43 114
63-39 63 66.20 253 3.53 1.10 4.90 1.12 2 3
63-42 63 70.38 1,053 15.39 5.54 21,72595 547 130 118
63-44 63 75.28 1,078 313.00 725.83 21,754.36 87.18 276 321
63-47 63 77.62 217 413 4.08 3,246.76 4.00 50 56
63-48 63 72.04 109 0.60 0.52 0.92 0.54 10 12

66-0 66 7093 13 0.07 0.10 0.09 0.11 2 2
66-1 66 76.08 59 0.38 0.55 0.41 0.56 10 10
66-2 66 79.01 29 0.16 0.18 0.17 0.20 0 0
66-3 66 72.63 49 0.48 0.27 0.71 0.29 10 10
66-4 66 75.05 28 0.15 0.19 0.18 0.21 0 0
66-5 66 78.86 107 0.82 1.16 0.89 1.16 21 21
66-6 66 7295 47 0.28 0.25 0.33 0.25 4 4
66-7 66 69.42 87 0.72 0.42 0.95 0.45 9 9

A.2 Evaluation of Scheduling Design | 295
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
66-8 66 83.18 97 0.93 0.97 1.37 1.20 23 21
66-9 66 7297 29 0.19 0.20 0.26 0.21 2 3
66-10 66 7242 57 1.10 0.57 2.83 0.71 9 10
66-11 66 76.99 117 1.24 217 2.01 2.13 20 21
66-12 66 7128 113 0.97 1.49 1.30 1.48 0 10
66-15 66 80.30 103 0.57 0.50 0.75 0.51 21 21
66-16 66 71.38 508 25.66 33.47 21,78593 16.05 142 113
66-19 66 7724 458 27.40 3.45 487.92 3.47 122 127
66-20 66 75.86 108 1.48 0.53 9.10 0.56 11 11
66-22 66 73.30 558 13.47 71.02 29.31 30.17 107 105
66-23 66 83.08 578 26,657.36 654.21 21,874.12 100.08 111 145
66-24 66 7094 278 415.59 20.11 1,448.29 11.54 47 51
66-25 66 78.83 138 1.36 1.17 14.74 1.13 20 23
66-26 66 7042 478 21.73 55.81 45.45 27.31 64 75
66-28 66 75.52 48 0.28 0.43 0.40 0.46 0 1
66-30 66 7319 528 1,535.08 86.05 2,644.12 30.33 99 118
66-31 66 72.02 523 13.52 12.90 33.62 20.20 6 27
66-34 66 77.03 473 16.29 21.99 109.47 13.69 118 125
66-36 66 75.82 273 2.78 5.39 159.82 429 56 54
66-37 66 76.63 573 36.00 72.14 20.94 31.45 106 105
66-39 66 69.20 253 2.84 1.10 8.73 1.12 3 4
66-42 66 73.38 1,053 15.85 539 21,710.78 5.66 119 120
66-44 66 78.28 1,078 455.73 548.89 21,759.27 95.29 322 341
66-47 66 80.62 217 2.71 4.29 28.83 4.16 65 65
66-48 66 75.04 109 0.62 0.56 1.05 0.55 11 17
69-0 69 7393 13 0.08 0.10 0.10 0.12 2 2
69-1 69 79.08 59 0.31 0.54 0.33 0.54 10 10
69-2 69 82.01 29 0.16 0.18 0.17 0.18 0 0
69-3 69 75.63 49 0.31 0.27 0.42 0.30 10 10

296 | Appendix
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fyts(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
69-4 69 78.05 28 0.15 0.20 0.25 0.20 0 1
69-5 69 81.86 107 0.75 1.14 0.97 1.15 21 21
69-6 69 7595 47 0.27 0.25 0.33 0.27 4 4
69-7 69 7242 87 0.61 0.43 1.19 0.44 9 9
69-9 69 7597 29 0.17 0.20 0.26 0.21 2 3
69-10 69 7542 57 3.63 0.59 11.14 0.70 9 11
69-11 69 79.99 117 1.13 2.00 1.73 1.94 21 21
69-12 69 7428 113 0.84 1.52 0.99 1.43 20 21
69-15 69 83.30 103 0.57 0.44 0.79 0.48 21 21
69-16 69 74.38 508 51.17 8.20 14,544.92 6.01 120 122
69-19 69 80.24 458 25.49 3.44 1,061.80 3.53 151 151
69-20 69 78.86 108 2.78 0.62 591 0.54 11 12
69-23 69 86.08 578 16,626.61 51435 21,806.80 107.56 123 160
69-24 69 7394 278 157.74 22.84 1,175.01 9.82 47 52
69-25 69 81.83 138 2.64 1.39 53.01 1.38 20 23
69-26 69 7342 478 23.43 76.83 21,64491 2528 109 109
69-28 69 78.52 48 0.28 0.40 0.41 0.42 0 1
69-30 69 76.19 528 934.31 110.06 21,824.49 34.48 108 124
69-31 69 75.02 523 8.41 7.72 13.90 7.05 104 104
69-34 69 80.03 473 20.85 29.96 101.98 13.48 106 147
69-36 69 78.82 273 25.51 6.06 77.54 4.87 60 58
69-37 69 79.63 573 1,161.54 90.11 917.59 45.03 57 116
69-39 69 7220 253 2.80 1.10 6.64 1.12 3 5
69-42 69 76.38 1,053 16.12 591 21,700.17 5.64 172 171
69-44 69 81.28 1,078 534.63 1,010.91 21,751.39 104.73 328 372
69-47 69 83.62 217 2.75 4.07 20.53 4.07 65 71
69-48 69 78.04 109 0.57 0.55 1.32 0.55 19 17
72-0 72 7693 13 0.08 0.09 0.09 0.11 2 2
72-1 72 82.08 59 0.31 0.54 0.35 0.55 10 10

A.2 Evaluation of Scheduling Design | 297
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
72-2 72 85.01 29 0.28 0.20 0.18 0.21 0 1
72-3 72 78.63 49 0.33 0.27 0.60 0.29 14 10
72-4 72 81.05 28 0.15 0.22 0.25 0.20 0 1
72-5 72 84.86 107 0.77 1.16 1.17 1.16 21 22
72-6 72 7895 47 0.27 0.25 0.42 0.28 4 5
72-7 72 7542 87 0.52 0.44 1.12 0.45 9 10
72-8 72 89.18 97 0.65 1.03 1.17 1.25 32 31
72-9 72 7897 29 0.16 0.16 0.31 0.19 2 3

72-10 72 78.42 57 0.54 0.56 3.39 0.70 9 11

72-11 72 8299 117 1.14 2.04 1.19 1.98 21 21

72-12 72 7728 113 0.81 1.56 1.20 1.45 20 21

72-15 72 86.30 103 0.54 0.47 0.92 0.47 21 22

72-16 72 77.38 508 30.48 34.74 291.36 15.81 140 131
72-19 72 83.24 458 11.90 3.38 67.26 3.52 162 159
72-22 72 79.30 558 16.79 69.51 195.55 26.99 110 110
72-23 72 89.08 578 67,811.62 363.72 21,827.05 85.46 139 174
72-24 72 7694 278 376.57 29.00 759.66 11.78 48 57
72-25 72 84.83 138 291 1.47 3.03 1.49 20 23
72-26 72 7642 478 1,167.89 48.42 1,817.46 19.04 125 133
72-28 72 81.52 48 0.28 0.25 0.42 0.27 5 5

72-30 72 79.19 528 712.15 94.57 1,609.21 33.57 112 130
72-31 72 78.02 523 28.06 11.28 13.23 11.20 105 105
72-34 72 83.03 473 20.41 38.59 99.46 11.79 157 153
72-36 72 81.82 273 14.51 6.32 269.41 5.10 60 62
72-37 72 82.63 573 1,877.41 93.17 734.98 43.10 64 116
72-39 72 7520 253 2.74 1.16 49.96 1.13 4 5

72-42 72 79.38 1,053 16.88 578 21,69351 594 176 176
72-44 72 84.28 1,078 567.90 838.94 21,807.13 106.78 385 397
72-47 72 86.62 217 2.76 2.74 57.12 2.79 72 73

298 | Appendix

Table A.14: Results for Benchmark 1 - PTP.

M Ucp(%) Ur(%) J Fi5(s) Frps(s) Otts(s) Ofps(s) Pus(s) Prps(s)

72-48 72 81.04 109 1.12 0.56 1.19 0.57 20 22
75-0 75 79.93 13 0.08 0.10 0.10 0.11 2 2
75-1 75 85.08 59 0.30 0.54 0.33 0.54 10 10
75-2 75 88.01 29 0.36 0.20 0.17 0.23 0 1
75-3 75 81.63 49 0.29 0.28 0.32 0.28 13 10
75-4 75 84.05 28 0.15 0.20 0.17 0.21 0 1
75-5 75 87.86 107 0.70 1.15 0.78 1.16 21 22
75-6 75 81.95 47 0.27 0.26 0.37 0.27 4 5
75-7 75 78.42 87 0.58 0.44 0.85 0.46 13 13
759 75 81.97 29 0.16 0.17 0.25 0.18 2 3
75-10 75 81.42 57 0.57 0.56 1.57 0.70 10 13
75-11 75 85.99 117 1.03 2.07 1.44 2.02 21 22
75-12 75 80.28 113 0.79 1.42 1.30 1.35 21 21
75-15 75 89.30 103 0.56 0.46 0.67 0.53 22 22

75-16 75 80.38 508 24.76 31.37 1,582.82 12.55 138 141
75-19 75 86.24 458 14.98 3.32 105.36 3.26 173 167
75-22 75 82.30 558 538.74 20292 21,837.76 33.01 145 140
75-23 75 92.08 578 47,278.86 500.17 21,897.25 77.98 163 185
75-24 75 7994 278 451 30.58 377.51 10.97 57 58
75-25 75 87.83 138 1.33 1.66 4.68 1.62 21 36
75-26 75 7942 478 14.70 7270 21,684.05 30.15 109 111
75-28 75 84.52 48 0.27 0.25 0.41 0.26 5 5
75-30 75 82.19 528 395.58 97.09 21,77476 33.66 139 144

75-31 75 81.02 523 8.21 8.54 16.20 7.89 105 106
75-34 75 86.03 473 18.61 8.21 96.22 8.16 168 161
75-36 75 84.82 273 2.38 6.71 52.07 5.57 71 67

75-37 75 85.63 573 1,740.79 14556 3,869.11 50.17 63 118
75-39 75 7820 253 2.66 1.09 15.88 1.11 3 6

75-42 75 82.38 1,053 18.82 6.08 21,687.36 6.31 246 228

A.2 Evaluation of Scheduling Design | 299
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
75-44 75 87.28 1,078 991.43 1,163.14 1,395.50 104.19 385 426
75-47 75 89.62 217 3.06 3.80 11.47 3.84 89 89
75-48 75 84.04 109 0.80 0.62 1.29 0.64 24 24
78-0 78 8293 13 0.08 0.10 0.09 0.11 2 2
78-1 78 88.08 59 0.30 0.53 0.34 0.56 10 10
78-2 78 91.01 29 0.14 0.17 0.17 0.25 5 5
78-3 78 84.63 49 0.23 0.30 0.42 0.32 10 12
78-4 78 87.05 28 0.19 0.16 0.22 0.18 0 1
78-5 78 90.86 107 0.77 1.01 1.34 1.02 23 22
78-6 78 84.95 47 0.26 0.26 0.40 0.28 4 5
78-7 78 81.42 87 0.50 0.44 0.67 0.47 13 14
78-8 78 9518 97 0.61 0.79 1.44 0.79 34 33
78-9 78 84.97 29 0.16 0.17 0.27 0.18 2 5
78-10 78 84.42 57 1.56 0.56 1.51 0.74 12 14
78-11 78 88.99 117 1.21 2.31 1.58 2.34 22 22
78-12 78 83.28 113 0.75 1.48 1.03 1.36 21 21
78-15 78 9230 103 0.53 0.49 0.69 0.50 27 24
78-16 78 83.38 508 19.01 45.59 358.69 13.26 153 151
78-19 78 89.24 458 13.76 3.44 81.01 3.49 196 176
78-22 78 85.30 558 14.92 79.49 83.00 29.36 115 114
78-24 78 8294 278 362.46 25.69 761.29 11.76 56 67
78-25 78 90.83 138 6.28 1.37 7.60 1.37 32 46
78-26 78 8242 478 20.95 71.82 21,656.25 27.46 109 111
78-28 78 87.52 48 0.27 0.27 0.42 0.26 5 6
78-30 78 85.19 528 397.64 14091 21,811.05 36.55 146 154
78-31 78 84.02 523 9.47 8.05 13.69 7.59 107 108
78-34 78 89.03 473 21.79 7.91 147.29 7.29 177 175
78-36 78 87.82 273 32.08 4.79 30.26 419 75 60
78-37 78 88.63 573 217236 11671 2,898.56 46.67 69 156

300 | Appendix

Table A.14: Results for Benchmark 1 - PTP.

M Ucp(%) Ur(%) J Fi5(s) Frps(s) Otts(s) Ofps(s) Pus(s) Prps(s)

78-42 78 85.38 1,053 19.76 6.97 21,683.90 7.08 293 283
78-44 78 90.28 1,078 1,434.18 1,591.52 21,837.96 118.78 456 468

78-48 78 87.04 109 0.56 0.65 1.05 0.67 29 29
81-0 81 85.93 13 0.08 0.10 0.09 0.11 2 2
81-1 81 91.08 59 0.32 0.60 0.49 0.59 10 11
81-2 81 94.01 29 0.14 0.17 0.19 0.26 5 5
81-3 81 87.63 49 0.26 0.30 0.29 0.31 17 15
81-4 81 90.05 28 0.15 0.16 0.17 0.18 5 5
81-5 81 93.86 107 0.71 0.90 1.23 0.94 29 30
81-6 81 87.95 47 0.30 0.28 0.70 0.27 9 9
81-7 81 84.42 87 0.82 0.48 1.33 0.48 17 18
81-9 81 87.97 29 0.16 0.17 0.22 0.19 2 6

81-10 81 87.42 57 0.99 0.50 4.09 0.48 13 12

81-11 81 9199 117 1.09 1.64 4.63 1.64 23 25

81-12 81 86.28 113 0.80 1.38 1.04 1.30 21 22

81-15 81 9530 103 0.51 0.50 1.01 0.51 31 32

81-16 81 86.38 508 15.86 48.15 231.39 9.93 163 161
81-19 81 9224 458 13.87 3.43 50.01 3.47 186 186
81-22 81 88.30 558 221422 16139 6,795.43 35.65 172 160
81-24 81 85.94 278 187.82 25.60 236.16 12.05 66 73

81-25 81 93.83 138 2.33 0.27 5.45 0.31 42 NA
81-26 81 8542 478 40.77 75.87 99.82 30.31 108 127
81-28 81 90.52 48 0.27 0.27 0.88 0.27 5 6

81-30 81 88.19 528 1,183.19 141.60 424526 37.23 147 165
81-31 81 87.02 523 8.25 9.67 85.51 8.99 109 111
81-34 81 92.03 473 74.69 6.13 63.35 6.22 185 184
81-36 81 90.82 273 37.40 491 231.80 4.27 85 85

81-37 81 91.63 573 172.39 11495 2,519.68 49.97 89 161

81-42 81 88.38 1,053 21.66 11.34 9,912.05 12.16 356 344

A.2 Evaluation of Scheduling Design | 301
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fis(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
84-0 84 88.93 13 0.08 0.10 0.08 0.11 2 2
84-1 84 9408 59 0.30 0.54 0.50 0.53 12 14
84-2 84 97.01 29 0.13 0.16 0.19 0.18 7 7
84-3 84 90.63 49 0.24 0.29 0.28 0.30 17 15
84-4 84 93.05 28 0.14 0.16 0.17 0.16 6 6
84-6 84 90.95 47 0.28 0.26 0.44 0.28 10 9
84-7 84 8742 87 0.76 0.51 0.91 0.53 17 18
84-9 84 9097 29 0.16 0.16 0.24 0.17 6 7
84-10 84 90.42 57 0.89 0.48 5.13 0.48 14 17
84-11 84 9499 117 7.02 1.21 5.32 1.24 37 39
84-12 84 89.28 113 0.69 1.44 1.31 1.33 22 23
84-16 84 89.38 508 15.20 41.44 261.20 17.36 179 172
84-19 84 95.24 458 10.70 4.19 29.33 4.19 206 196
84-22 84 91.30 558 59.14 97.00 9,770.64 26.97 133 132
84-24 84 88.94 278 560.42 27.83 701.79 9.41 78 82
84-25 84 96.83 138 2.67 0.28 1.83 0.29 55 NA
84-26 84 88.42 478 10.63 66.11 32.04 25.64 156 160
84-28 84 93.52 48 0.26 0.27 0.61 0.28 5 5
84-30 84 91.19 528 766.30 176.67 4,331.19 38.45 169 179
84-31 84 90.02 523 8.06 9.66 200.45 8.91 116 115
84-34 84 95.03 473 68.82 591 31.80 5.81 210 195
84-36 84 93.82 273 41.07 4.56 76.07 4.02 93 91
84-37 84 9463 573 1,505.29 633.58 22,138.98 22.26 173 190
84-42 84 91.38 1,053 40.56 118.83 197.30 26.80 445 464
87-0 87 9193 13 0.08 0.10 0.09 0.11 2 2
87-3 87 93.63 49 0.23 0.30 0.24 0.31 19 15
87-6 87 93.95 47 0.23 0.27 0.40 0.28 17 13
87-7 87 90.42 87 0.73 0.55 1.51 0.55 23 22
87-9 87 9397 29 0.15 0.15 0.23 0.17 6 7

302 | Appendix
Table A.14: Results for Benchmark 1 - PTP.

M Uep(%) U(%) J Fyts(s) Frps(s) Otts(s) Ofps(8) Pus(s) Prps(s)
87-10 87 93.42 57 7.77 0.48 2.66 0.48 20 18
87-12 87 9228 113 0.72 1.45 143 1.38 26 25
87-16 87 9238 508 12.27 58.11 2,369.99 14.58 135 134
87-22 87 9430 558 2,136.64 116.19 885.84 27.17 196 195
87-24 87 9194 278 381.25 26.09 1,119.80 9.10 83 87
87-26 87 9142 478 9.19 57.62 27.15 23.51 164 163
87-28 87 96.52 48 0.23 0.25 1.25 0.27 12 12
87-30 87 9419 528 1,852.05 255,50 20,638.99 34.02 186 191
87-31 87 93.02 523 9.20 5.93 28.64 5.98 128 142
87-36 87 96.82 273 14.23 4.60 182.49 4.01 97 97

90-0 90 9493 13 0.08 0.09 0.09 0.10 3 3
90-6 90 96.95 47 0.21 0.26 0.24 0.26 23 17
90-7 90 9342 87 0.56 0.57 1.02 0.56 26 30
90-9 90 9697 29 0.42 0.04 0.33 0.04 7 NA
90-10 90 9642 57 1.41 0.49 1.97 0.51 17 19
90-12 90 9528 113 1.01 1.09 2.52 1.14 39 30
90-16 90 9538 508 36.52 9.78 61.78 8.91 203 197
90-24 90 9494 278 731.89 25.19 1,081.32 6.89 86 93
90-26 90 9442 478 28.83 63.97 70.05 21.79 169 177
90-28 90 99.52 48 0.22 0.27 0.65 0.29 18 19
93-7 93 9642 87 0.42 0.54 0.43 0.56 39 36

Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) Ur(%) J Fits(s) Ffps(s) Ots(s) Ofps(s) Pis(s) prs(s)
30-0 30 31.50 29 0.13 0.10 0.11 0.10 0 0
30-1 30 3211 147 051 0.47 0.46 0.42 0 0
30-2 30 31.48 67 0.22 0.17 0.20 0.18 0 0
30-3 30 3132 107 033 0.34 0.37 0.35 0 10
30-4 30 32.04 65 0.17 0.16 0.19 0.16 0 0

A.2 Evaluation of Scheduling Design | 303
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
30-5 30 3161 259 1.29 0.75 3.14 0.74 10 18
30-6 30 3112 99 040 025 0.37 0.26 0 0
30-7 30 3153 181 0.75 041 0.80 0.43 0 0
30-8 30 3206 217 105 0.77 1.00 0.76 0 20
30-9 30 30.57 57 030 0.17 0.28 0.17 0 0
30-10 30 3122 135 132 048 1.05 0.46 4 8
30-11 30 3211 295 153 1.00 1.48 1.00 0 0
30-12 30 3155 285 136 074 1.17 0.75 0 0
30-13 30 3066 125 035 029 0.35 0.28 0 0
30-14 30 31.79 205 0.77 046 0.79 0.47 0 0
30-15 30 3147 245 095 050 0.99 0.49 0 0
30-16 30 3136 613 6.00 1.72 197.63 1.78 54 57
30-17 30 31.00 213 1.02 0.50 1.95 0.52 17 21
30-18 30 31.03 413 287 091 5.39 0.89 36 36
30-19 30 31.62 513 845 1.66 18.32 1.64 42 48
30-20 30 3069 113 046 028 0.36 0.30 0 0
30-21 30 3151 313 285 094 5.55 0.91 23 28
30-22 30 3207 713 1381 246 80.40 242 31 37
30-23 30 3192 737 1690 342 27.73 3.35 21 48
30-24 30 3111 337 3.19 1.28 18.46 1.24 16 23
30-25 30 30.77 143 134 050 0.97 0.47 0 1
30-26 30 3150 543 6.63 293 21.33 2.62 27 58
30-27 30 31.73 453 3.93 1.60 13.62 1.56 37 56
30-28 30 30.18 53 022 015 0.19 0.15 0 0
30-29 30 31.03 247 1.41 0.71 3.15 0.74 14 16
30-30 30 31.65 647 950 233 60.06 2.40 27 46
30-31 30 31.70 642 6.06 1.77 7.44 1.76 1 1
30-32 30 30.77 242 110 0.69 1.16 0.68 0 20
30-33 30 31.04 443 340 094 4.48 0.99 1 2

304 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
30-34 30 31.66 533 442 3.79 6.83 3.21 3 53
30-35 30 30.72 133 0.59 0.42 0.59 0.40 0 1
30-36 30 30.73 332 1.78 1.42 2.71 1.27 14 24
30-37 30 3222 732 1078 3.38 25.32 424 1 33
30-38 30 3150 703 6.11 1.86 13.14 1.81 35 35
30-39 30 3145 303 1.53 0.65 1.62 0.66 0 1
30-40 30 3124 503 377 235 5.02 2.05 1 52
30-41 30 31.76 603 4.52 1.25 5.69 1.28 3 4
30-42 30 33.00 1,103 1147 2.60 15.48 2.55 3 4
30-43 30 3276 1,132 16.06 4.33 24.95 415 60 104
30-44 30 3274 1,137 15.21 4.68 45.61 4.74 70 108
30-45 30 3314 1,113 1547 3.65 26.29 3.49 71 58
30-46 30 3235 445 226 1.03 4.07 0.99 24 42
30-47 30 32.60 455 2.56 1.39 2.45 1.39 20 20
30-48 30 3282 227 0.78 0.54 0.63 0.56 0 2
30-49 30 3254 419 190 0.92 3.06 0.95 33 40

33-0 33 3450 29 0.12 0.10 0.13 0.11 0 0
33-1 33 3511 147 0.55 0.41 0.43 0.41 0 0
33-2 33 3448 67 0.23 0.17 0.21 0.18 0 0
33-3 33 3432 107 0.39 0.39 0.37 0.35 0 10
33-4 33 35.04 65 0.18 0.16 0.26 0.16 0 0
33-5 33 3461 259 1.01 0.76 1.00 0.73 0 2
33-6 33 3412 99 0.31 0.27 0.35 0.26 0 0
33-7 33 3453 181 0.72 0.43 1.74 0.42 8 16
33-8 33 3506 217 091 0.78 1.13 0.72 0 4
33-9 33 33.57 57 0.28 0.18 0.28 0.18 0 0
33-10 33 3422 135 0.69 0.46 1.25 0.46 4 10
33-11 33 3511 295 254 1.11 1.55 1.08 0 12
33-12 33 3455 285 1.18 0.74 1.13 0.75 0 0

A.2 Evaluation of Scheduling Design | 305
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
33-13 33 33.66 125 043 028 0.35 0.31 0 0
33-14 33 3479 205 070 045 0.77 0.47 0 0
33-15 33 3447 245 0.89 0.52 0.74 0.52 0 0
33-16 33 3436 613 5.25 1.75 31.81 1.80 56 62
33-17 33 3400 213 135 049 1.82 0.52 16 21
33-18 33 34.03 413 321 0.90 3.86 0.90 42 41
33-19 33 3462 513 6.52 1.55 16.32 1.56 45 52
33-20 33 3369 113 0.39 0.27 0.51 0.29 0 0
33-21 33 3451 313 673 091 40.89 0.88 25 31
33-22 33 35.07 713 1277 247 39.32 2.51 37 37
33-23 33 3492 737 3054 3.65 84.81 3.72 26 58
33-24 33 3411 337 3.46 1.21 8.43 1.27 18 25
33-25 33 3377 143 078 044 0.84 0.46 0 1
33-26 33 3450 543 591 2.56 7.90 3.27 1 52
33-27 33 3473 453 3.85 1.67 11.43 1.59 39 64
33-28 33 33.18 53 020 0.14 0.19 0.17 0 0
33-29 33 3403 247 136 073 7.45 0.72 16 17
33-30 33 3465 647 11.03 245 31.09 2.31 27 51
33-31 33 3470 642 5.61 1.73 8.78 1.70 1 2
33-32 33 3377 242 116 051 1.01 0.53 20 20
33-33 33 3404 443 335 096 8.20 0.99 21 42
33-34 33 3466 533 5.06 246 12.21 2.87 32 49
33-35 33 3372 133 047 040 0.58 0.39 0 1
33-36 33 33.73 332 232 1.35 3.92 1.22 16 27
33-37 33 3522 732 1048 335 13.05 3.14 1 33
33-38 33 3450 703 7.39 1.86 11.92 1.87 39 41
33-39 33 3445 303 1.63 0.64 1.76 0.64 3 3
33-40 33 3424 503 3.54 1.12 4.67 1.12 2 3
33-41 33 3476 603 4.69 1.30 6.33 1.27 1 3

306 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
33-42 33 36.00 1,103 10.78 2.62 14.60 2.58 3 4
33-43 33 3576 1,132 1268 4.88 47.32 4.69 104 148
33-44 33 3574 1,137 1672 4.65 30.08 5.39 137 109
33-45 33 36.14 1,113 13.62 3.46 26.01 3.43 64 66
33-46 33 3535 445 195 0.98 5.00 0.99 40 42
33-47 33 3560 455 2.59 1.45 3.50 1.43 22 24
33-48 33 3582 227 0.66 0.54 0.63 0.52 0 2
33-49 33 3554 419 194 0.91 3.31 0.93 40 40

36-0 36 3750 29 0.12 0.10 0.11 0.13 0 0
36-1 36 38.11 147 0.51 0.41 0.64 0.42 0 0
36-2 36 37.48 67 0.22 0.17 0.21 0.18 0 0
36-3 36 3732 107 0.58 0.35 0.33 0.33 0 10
36-4 36 38.04 65 0.20 0.16 0.27 0.17 0 0
36-5 36 3761 259 1.10 0.75 1.17 0.73 0 2
36-6 36 3712 99 037 025 0.32 0.26 0 0
36-7 36 3754 181 0.83 0.42 1.05 0.43 16 16
36-8 36 38.06 217 0.95 1.04 0.89 0.94 0 20
36-9 36 36.57 57 0.19 0.16 0.28 0.17 0 0
36-10 36 3722 135 1.01 0.48 1.15 0.47 6 10
36-11 36 3811 295 171 1.01 1.91 1.02 0 2
36-12 36 3755 285 1.29 0.74 1.11 0.73 0 0
36-13 36 36.66 125 0.38 0.29 0.42 0.29 0 0
36-14 36 3779 205 0.70 0.46 1.31 0.46 0 0
36-15 36 3747 245 0.83 0.51 1.06 0.51 0 0
36-16 36 3736 613 3196 1.85 31.91 1.82 64 67
36-17 36 3700 213 097 049 1.75 0.50 5 6
36-18 36 37.03 413 4.18 0.92 433 0.91 42 46
36-19 36 3762 513 3.85 1.61 15.10 1.56 52 60
36-20 36 36.69 113 0.56 0.28 0.87 0.28 10 10

A.2 Evaluation of Scheduling Design | 307
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
36-21 36 3751 313 355 091 9.38 0.87 31 34
36-22 36 38.07 713 1007 246 11.45 2.43 1 2
36-23 36 3792 737 1383 374 51.14 4.85 27 63
36-24 36 3711 337 4.59 1.46 11.96 1.37 24 34
36-25 36 36.77 143 070 044 0.81 0.47 0 1
36-26 36 3750 543 791 2.30 17.88 2.25 46 48
36-27 36 3773 453 3374 143 15.96 1.39 64 66
36-28 36 36.18 53 020 0.16 0.26 0.17 0 5
36-29 36 37.03 247 244 075 10.98 0.73 23 24
36-30 36 37.65 647 11.83 253 63.27 2.50 53 76
36-31 36 3770 642 6.60 1.75 7.63 1.71 1 2
36-32 36 36.77 242 1.04 0.51 1.02 0.52 20 20
36-33 36 37.04 443 358 095 428 0.93 1 2
36-34 36 37.66 533 4.27 1.95 13.45 1.81 55 53
36-35 36 36.72 133 047 042 0.45 0.40 0 1
36-36 36 36.73 332 199 1.51 3.20 1.24 21 28
36-37 36 3822 732 1399 357 16.20 3.22 21 53
36-38 36 3750 703 782 204 12.39 1.86 44 45
36-39 36 3745 303 148 0.67 1.80 0.62 6 6
36-40 36 3724 503 377 240 498 1.94 1 51
36-41 36 37.76 603 4.54 1.27 5.99 1.26 12 11
36-42 36 39.00 1,103 1338 2.66 21.48 2.56 107 103
36-43 36 3876 1,132 1514 543 73.02 5.00 161 172
36-44 36 38.74 1,137 2460 458 35.30 4.59 113 109
36-45 36 39.14 1,113 1739 353 29.86 3.45 63 65
36-46 36 3835 445 224 098 3.27 1.02 40 42
36-47 36 38.60 455 2.84 1.60 5.84 1.57 60 66
36-48 36 38.82 227 067 054 0.90 0.54 0 0
36-49 36 3854 419 177 092 3.73 0.93 48 48

308 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
39-0 39 4050 29 0.10 0.10 0.11 0.11 0 0
39-1 39 4111 147 046 0.41 0.61 0.41 0 0
39-2 39 4048 67 0.20 0.17 0.20 0.19 0 0
39-3 39 40.32 107 0.54 0.29 0.42 0.29 0 10
39-4 39 41.04 65 0.20 0.16 0.19 0.17 0 0
39-5 39 40.61 259 136 0.75 1.19 0.75 0 2
39-6 39 4012 99 0.44 0.25 0.32 0.27 0 0
39-7 39 4054 181 0.80 0.42 0.78 0.44 18 16
39-8 39 41.06 217 117 0.69 2.53 0.69 0 20
39-9 39 39.57 57 0.24 0.18 0.38 0.26 2 4

39-10 39 40.22 135 0.58 0.40 0.90 0.40 0 8
39-11 39 4111 295 1.68 1.16 2.45 1.09 8 20
39-12 39 4055 285 1.14 0.76 1.28 0.75 0 0
39-13 39 39.66 125 0.35 0.33 0.51 0.31 0 2
39-14 39 40.79 205 077 044 0.80 0.46 0 0
39-15 39 4047 245 093 0.49 1.03 0.52 0 0
39-16 39 4036 613 541 1.89 17.89 1.91 68 74
39-17 39 40.00 213 1.26 0.49 1.36 0.51 5 6
39-18 39 40.03 413 272 0.92 411 0.92 49 51
39-19 39 4062 513 371 1.66 18.86 1.61 61 64
39-20 39 39.69 113 0.38 0.28 0.56 0.29 14 10
39-21 39 4051 313 284 0.90 15.58 0.89 33 35
39-22 39 41.07 713 9.17 2.48 23.75 2.43 44 52
39-23 39 4092 737 1650 3.73 112.86 4.85 32 68
39-24 39 40.11 337 2.72 1.80 8.41 1.56 26 37
39-25 39 39.77 143 0.65 0.44 0.63 0.43 0 1
39-26 39 40.50 543 6.04 239 14.65 3.13 1 52
39-27 39 40.73 453 3.08 1.50 14.50 1.48 71 69
39-28 39 39.18 53 0.19 0.17 0.25 0.16 0 5

A.2 Evaluation of Scheduling Design | 309
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
39-29 39 40.03 247 180 097 12.66 0.86 25 42
39-30 39 40.65 647 15.09 273 17.90 3.61 51 81
39-31 39 40.70 642 727 1.78 8.81 1.70 1 2
39-32 39 39.77 242 114 052 1.14 0.52 20 20
39-33 39 40.04 443 390 0.6 4.58 0.97 1 2
39-34 39 40.66 533 4.01 2.16 22.82 2.00 54 64
39-35 39 39.72 133 056 041 0.62 0.39 0 1
39-36 39 39.73 332 213 1.48 3.98 1.28 22 20
39-37 39 4122 732 2141 3.87 13.76 4.49 21 53
39-38 39 4050 703 7.28 1.96 8.52 1.83 50 50
39-39 39 4045 303 166 0.62 1.68 0.62 6 6
39-40 39 40.24 503 4.00 1.15 4.18 1.12 1 51
39-41 39 40.76 603 5.09 1.27 6.05 1.24 13 12
39-42 39 42.00 1,103 1447 2.62 19.49 2.59 105 103
39-43 39 4176 1,132 2896 540 4,64448 492 170 180
39-44 39 4174 1,137 2575 4.65 27.19 4.65 113 119
39-45 39 4214 1,113 22.84 349 27.25 3.49 68 116
39-46 39 4135 445 277 098 3.24 0.99 56 42
39-47 39 41.60 455 3.20 1.83 8.40 2.32 61 72
39-48 39 41.82 227 082 053 1.31 0.53 4 4
39-49 39 4154 419 2.23 0.95 243 0.92 56 48

42-0 42 43.50 29 0.13 0.10 0.11 0.11 0 0
42-1 42 4411 147 0.64 0.42 0.53 0.42 0 0
42-2 42 43.48 67 0.27 0.17 0.21 0.18 0 0
42-3 42 43.32 107 0.40 0.28 0.38 0.27 10 10
42-4 42 4404 65 0.21 0.16 0.20 0.15 0 0
42-5 42 4361 259 1.8 0.83 2.39 0.82 25 34
42-6 42 4312 99 040 024 0.32 0.26 0 0
42-7 42 4354 181 072 042 0.89 0.42 17 24

310 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fis(s) Ffps(s) Otts(s) Ofps(s) Pys(s) prs(s)
42-8 42 4406 217 115 0.68 0.95 0.68 20 20
429 42 42.57 57 0.26 0.16 0.36 0.17 4 4
42-10 42 4322 135 1.09 0.40 1.00 0.41 0 0
42-11 42 4411 295 235 1.03 1.44 1.00 0 2
42-12 42 4355 285 1.38 0.75 1.07 0.74 0 0
42-13 42 4266 125 046 0.30 0.42 0.31 0 2
42-14 42 4379 205 0.85 0.46 0.77 0.47 20 20
42-15 42 4347 245 114 0.53 0.75 0.52 0 0
42-16 42 4336 613 6.49 2.06 21.76 2.00 79 88
42-17 42 43.00 213 1.01 0.57 1.46 0.50 5 11
42-18 42 43.03 413 340 0.96 3.64 0.90 51 56
42-19 42 43.62 513 5.21 1.72 16.04 1.65 64 70
42-20 42 42.69 113 0.45 0.30 0.62 0.28 10 15
42-21 42 4351 313 277 092 10.30 0.90 39 41
42-22 42 4407 713 1061 246 20.96 2.39 1 3
42-23 42 4392 737 2030 3.80 105.06 497 38 73
42-24 42 4311 337 3.17 1.82 13.51 1.59 30 42
42-25 42 4277 143 0.64 0.45 0.76 0.45 0 11
42-26 42 4350 543 9.35 3.03 29.29 2.80 49 74
42-27 42 4373 453 3.16 1.52 12.36 1.49 71 75
42-28 42 42.18 53 0.19 0.15 0.19 0.16 5 5
42-29 42 43.03 247 1.74 0.99 11.27 0.93 26 44
42-30 42 43.65 647 13.01 291 17.22 3.70 65 86
42-31 42 4370 642 5.94 1.76 7.78 1.74 1 2
42-32 42 42.77 242 0.86 0.82 0.99 0.67 23 39
42-33 42 43.04 443 3.16 1.18 4.29 1.13 2 22
42-34 42 43.66 533 3.60 2.14 13.86 2.02 60 68
42-35 42 4272 133 0.63 0.34 0.53 0.37 0 1
42-36 42 4273 332 192 1.47 4.02 1.31 26 41

A.2 Evaluation of Scheduling Design | 311
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fis(s) F f ps(s) Otts(s) Ofps(s) Pus(s) P fps(S)
42-37 42 4422 732 1272 395 65.31 4.57 21 53
42-38 42 4350 703 5.64 1.88 8.74 1.83 56 56
42-39 42 4345 303 1.59 0.64 1.87 0.65 6 6
42-40 42 4324 503 3.58 1.15 427 1.10 51 51
42-41 42 4376 603 4.78 1.35 5.67 1.25 14 15
42-42 42 4500 1,103 13.06 2.67 20.56 2.59 106 104
42-43 42 4476 1,132 1292 545 65.10 497 190 188
42-44 42 4474 1,137 19.84 4.74 27.31 4.66 115 159
42-45 42 4514 1,113 1696 3.53 23.91 3.53 120 116
42-46 42 4435 445 2.14 0.96 3.59 0.96 8 10
42-47 42 44.60 455 3.26 1.84 8.34 2.34 75 74
42-48 42 44.82 227 0.77 0.54 1.46 0.55 4 6
42-49 42 4454 419 211 0.92 341 0.91 56 56

45-0 45 4650 29 012 0.10 0.10 0.11 0 0
45-1 45 4711 147 059 0.42 0.51 0.40 0 0
45-2 45 4648 67 026 0.17 0.28 0.17 0 0
45-3 45 4632 107 042 0.29 0.30 0.29 10 10
45-4 45 47.04 65 025 0.16 0.19 0.16 0 0
45-5 45 46.61 259 1.14 1.02 2.73 0.96 29 42
45-6 45 4612 99 042 023 0.33 0.24 0 0
45-7 45 46.53 181 1.14 0.42 1.40 0.43 18 24
45-8 45 47.06 217 1.29 0.69 1.01 0.68 20 20
45-9 45 45.57 57 0.26 0.16 0.45 0.17 6 4
45-10 45 4622 135 0.79 0.54 0.95 0.67 8 16
45-11 45 4711 295 2.37 1.00 2.62 0.99 8 24
45-12 45 46.55 285 191 0.75 1.42 0.73 0 0
45-13 45 4566 125 046 0.32 0.50 0.30 2 4
45-14 45 46.79 205 084 046 1.35 0.47 0 2
45-15 45 46.47 245 1.02 0.50 0.88 0.53 0 0

312 | Appendix

Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fyt5(s) Ffps(s) Ots(s) Ofps(s) Pis(s) prs(s)
45-16 45 4636 613 40.08 2.14 37.24 2.05 85 92

45-17 45 46.00 213 0.98 0.49 1.38 0.50 10 11

45-18 45 46.03 413 222 0.93 4.70 0.91 72 72
45-19 45 46.62 513 4.42 1.78 15.01 1.71 74 78
45-20 45 45.69 113 1.54 0.34 1.09 0.30 10 15
45-21 45 46.51 313 220 1.02 9.77 0.93 37 44
45-22 45 47.07 713 1177 2.52 21.88 2.45 56 67
45-23 45 4692 737 1919 461 110.87 4.28 61 98
45-24 45 46.11 337 3.29 1.84 19.73 1.63 37 44
45-25 45 45.77 143 0.70 0.44 0.82 0.45 10 11

45-26 45 46.50 543 748 2.05 8.52 1.98 51 52
45-27 45 46.73 453 3.10 1.76 13.45 1.72 80 83
45-28 45 45.18 53 0.22 0.15 0.19 0.17 5 5

45-29 45 46.03 247 215 1.14 15.71 1.03 28 50
45-30 45 46.65 647 11539 4.14 28.27 3.69 63 106

45-31 45 46.70 642 7.26 1.74 7.35 1.71 2 2
45-32 45 45.77 242 1.00 0.76 1.24 0.69 25 41
45-33 45 46.04 443 3.10 0.98 491 0.95 11 12

45-34 45 46.66 533 3.82 2.20 11.08 2.05 63 74
45-35 45 45.72 133 0.58 0.34 0.45 0.34 0 1
45-36 45 45.73 332 1.82 1.46 413 1.30 28 44

45-37 45 4722 732 1400 259 15.10 2.60 21 64
45-38 45 46.50 703 6.49 1.89 8.54 1.85 61 63
45-39 45 4645 303 1.57 0.64 1.88 0.64 7 8

45-40 45 46.24 503 2.66 2.58 4.13 2.08 56 95
45-41 45 46.76 603 4.64 1.26 5.68 1.28 16 17
45-42 45 48.00 1,103 13.57 274 41.66 2.57 112 111
45-43 45 4776 1,132 14.09 6.23 48.87 5.52 194 205
45-44 45 47.74 1,137 2342 474 29.33 4.69 180 159

A.2 Evaluation of Scheduling Design | 313
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
45-45 45 48.14 1,113 16.09 3.47 23.70 3.43 114 117
45-46 45 4735 445 1.96 1.05 4.29 1.03 14 18
45-47 45 4760 455 238 2.09 7.22 1.94 76 80
45-48 45 4782 227 073 0.56 1.05 0.56 4 8
45-49 45 4754 419 218 094 2.88 0.92 56 64

48-0 48 4950 29 0.11 0.10 0.15 0.11 0 0
48-1 48 50.11 147 0.63 041 0.62 0.40 0 0
48-2 48 4948 67 024 0.17 0.19 0.18 0 0
48-3 48 4932 107 037 0.30 0.36 0.28 10 10
48-4 48 50.04 65 025 0.16 0.24 0.17 0 0
48-5 48 49.61 259 1.01 1.08 3.02 1.02 28 46
48-6 48 49.12 99 0.37 0.26 0.57 0.26 11 8
48-7 48 4953 181 0.71 0.42 1.06 0.43 26 24
48-8 48 50.06 217 1.01 0.69 1.21 0.69 20 20
48-9 48 48.57 57 0.61 0.16 0.62 0.17 4 6
48-10 48 4922 135 062 0.56 1.37 0.52 10 18
48-11 48 50.11 295 2.69 1.06 3.79 1.01 28 40
48-12 48 4955 285 1.51 0.76 1.45 0.74 0 0
48-13 48 4866 125 040 0.30 0.68 0.31 2 4
48-14 48 4979 205 0.64 0.67 1.71 0.61 26 40
48-15 48 4947 245 095 051 0.76 0.50 0 0
48-16 48 4936 613 1472 221 1,536.15 2.21 95 97
48-17 48 49.00 213 1.02 0.49 1.40 0.50 10 11
48-18 48 49.03 413 3.14 0.93 4.76 0.92 27 29
48-19 48 49.62 513 5.30 2.79 9.83 241 66 101
48-20 48 4869 113 065 0.28 0.91 0.29 16 15
48-21 48 4951 313 355 0.99 10.51 0.95 45 51
48-22 48 50.07 713 1153 270 12.74 2.54 51 53
48-23 48 4992 737 2014 4.65 79.18 5.60 66 98

314 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
48-24 48 49.11 337 3.81 1.93 15.21 1.71 36 47
48-25 48 48.77 143 0.67 0.45 0.82 0.45 10 11
48-26 48 4950 543 1317 3.14 31.75 2.83 79 84
48-27 48 49.73 453 3.14 1.48 13.65 1.47 84 90
48-28 48 4818 53 0.21 0.15 0.25 0.16 0 0
48-29 48 49.03 247 153 1.23 414 1.08 31 51
48-30 48 4965 647 1759 429 49.49 3.70 94 111
48-31 48 4970 642 7.62 1.77 8.99 1.70 5 4
48-32 48 48.77 242 1.05 0.74 1.20 0.68 27 44
48-33 48 49.04 443 2.87 0.97 4.09 0.96 16 17
48-34 48 4966 533 551 1.86 6.65 1.79 53 54
48-35 48 48.72 133 0.65 0.35 0.43 0.35 0 1
48-36 48 48.73 332 1.79 1.53 419 1.33 31 47
48-37 48 50.22 732 1342 259 48.74 2.57 31 54
48-38 48 4950 703 6.96 1.96 12.01 1.94 113 60
48-39 48 4945 303 1.54 0.64 1.72 0.62 10 11
48-40 48 4924 503 4.54 1.10 4.55 1.13 51 51
48-41 48 49.76 603 6.16 1.26 6.49 1.26 22 23
48-42 48 51.00 1,103 1279 2.63 22.80 2.58 104 104
48-43 48 50.76 1,132 16.88 4.73 19.21 433 181 157
48-44 48 50.74 1,137 2412 4.66 22.36 4.64 158 159
48-45 48 51.14 1,113 16.71 3.52 31.25 3.47 124 109
48-46 48 5035 445 218 0.99 3.19 0.96 48 42
48-47 48 50.60 455 2.42 1.52 7.05 1.48 79 86
48-48 48 50.82 227 0.79 0.56 1.39 0.55 9 18
48-49 48 50.54 419 1.80 0.93 2.83 0.94 80 64

51-0 51 5250 29 0.13 0.11 0.14 0.11 2 2
51-1 51 5311 147 0.56 0.42 0.61 0.42 0 0
51-2 51 5248 67 0.24 0.17 0.29 0.17 0 0

A.2 Evaluation of Scheduling Design | 315
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
51-3 51 5232 107 0.38 0.29 0.41 0.28 14 10
51-4 51 53.04 65 0.21 0.21 0.19 0.20 10 10
51-5 51 5261 259 225 1.06 4.04 1.00 39 46
51-6 51 5212 99 0.41 0.25 0.73 0.25 11 16
51-7 51 5253 181 0.72 042 0.76 0.43 28 24
51-8 51 53.06 217 1.06 0.70 1.09 0.70 20 22
51-9 51 5157 57 024 0.16 0.36 0.17 6 6
51-10 51 5222 135 241 0.42 2.89 0.40 11 18
51-11 51 53.11 295 1.75 1.06 3.39 1.03 39 40
51-12 51 5255 285 1.18 0.86 1.17 0.82 40 40
51-13 51 51.66 125 041 0.30 0.69 0.29 6 6
51-14 51 52.79 205 0.72 0.67 1.83 0.61 38 42
51-15 51 5247 245 0.96 1.35 0.88 1.09 40 40
51-16 51 5236 613 5.27 1.81 13.67 1.71 102 105
51-17 51 52.00 213 0.89 0.49 1.38 0.50 15 16
51-18 51 52.03 413 261 0.92 5.58 0.91 34 39
51-19 51 5262 513 545 284 10.26 2.38 63 106
51-20 51 51.69 113 043 029 3.01 0.29 25 22
51-21 51 5251 313 943 0.87 5.65 0.87 49 57
51-22 51 53.07 713 1938 261 30.72 2.50 118 112
51-23 51 5292 737 1981 5.10 90.66 4.64 77 103
51-24 51 5211 337 15.71 2.38 14.55 1.98 40 63
51-25 51 51.77 143 0.71 0.45 0.90 0.44 10 11
51-26 51 5250 543 7.68 205 8.27 2.00 51 53
51-27 51 5273 453 3.30 1.50 11.88 1.46 89 93
51-28 51 51.18 53 024 015 0.29 0.16 8 5
51-29 51 5203 247 229 1.03 5.36 0.98 36 52
51-30 51 5265 647 16.06 431 39.15 3.73 93 116
51-31 51 5270 642 7.82 7.50 7.27 5.20 102 102

316 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
51-32 51 51.77 242 1.22 0.53 1.82 0.52 22 40
51-33 51 52.04 443 3.22 0.96 4.22 0.96 51 42
51-34 51 5266 533 6.01 1.83 7.25 1.76 57 54
51-35 51 51.72 133 0.64 0.34 0.43 0.36 0 1
51-36 51 51.73 332 216 0.89 8.63 0.87 33 50
51-37 51 5322 732 1566 290 41.14 3.96 94 103
51-38 51 5250 703 9.49 3.23 16.04 2.83 115 116
51-39 51 5245 303 1.33 0.67 1.95 0.64 15 15
51-40 51 5224 503 4.11 1.14 4.88 1.14 53 51
51-41 51 52.76 603 5.13 1.27 5.74 1.25 31 32
51-42 51 54.00 1,103 15.31 2.64 20.24 2.60 106 154
51-43 51 5376 1,132 1844 5.33 17.83 4.80 172 168
51-44 51 53.74 1,137 20.66 4.81 29.07 4.76 161 170
51-45 51 5414 1,113 1794 349 39.78 3.44 230 233
51-46 51 5335 445 254 0.98 3.28 0.98 44 62
51-47 51 53.60 455 2.65 1.48 414 1.48 61 60
51-48 51 53.82 227 081 0.57 1.49 0.57 23 22
51-49 51 5354 419 2.03 0.92 2.90 0.93 85 72

54-0 54 5550 29 0.12 0.11 0.11 0.12 4 4
54-1 54 56.11 147 0.59 0.40 0.43 0.42 0 0
54-2 54 55.48 67 0.23 0.17 0.32 0.19 0 0
54-3 54 5532 107 0.36 0.28 0.40 0.30 10 10
54-4 54 56.04 65 0.23 0.16 0.37 0.16 9 8
54-5 54 55.61 259 2.30 1.08 3.36 1.02 42 48
54-6 54 5512 99 0.33 0.25 0.50 0.25 12 16
54-7 54 55.54 181 0.67 0.46 1.41 0.45 21 24
54-8 54 56.06 217 0.89 0.75 1.42 0.69 24 22
54-9 54 5457 57 0.28 0.15 0.51 0.16 6 6
54-10 54 5522 135 081 0.45 1.73 0.42 13 20

A.2 Evaluation of Scheduling Design | 317
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
54-11 54 56.11 295 1.77 1.11 1.75 1.06 40 42
54-12 54 5555 285 135 073 1.26 0.74 0 0
54-13 54 5466 125 043 029 0.55 0.31 0 0
54-14 54 5579 205 0.69 0.67 1.84 0.60 31 44
54-15 54 55.47 245 0.77 1.19 0.98 0.96 40 40
54-16 54 55.36 613 5.27 1.70 14.44 1.75 114 119
54-17 54 55.00 213 1.00 051 1.74 0.51 22 23
54-18 54 55.03 413 2.74 1.00 5.93 0.98 44 50
54-19 54 55.62 513 5.92 2.84 9.35 2.38 78 111
54-20 54 54.69 113 0.42 0.30 1.28 0.28 28 22
54-21 54 5551 313 1.67 0.87 6.63 0.89 56 61
54-22 54 56.07 713 11.27 275 10.75 2.62 102 103
54-23 54 5592 737 2796 3.55 99.14 3.29 78 113
54-24 54 55.11 337 9.78 2.18 36.67 1.85 47 64
54-25 54 5477 143 074 045 0.82 0.46 10 11
54-26 54 5550 543 1137 483 17.80 4.80 94 127
54-27 54 55.73 453 4.04 1.54 13.32 1.52 104 112
54-28 54 5418 53 025 0.17 0.25 0.17 0 5
54-29 54 55.03 247 145 1.20 3.59 1.09 40 58
54-30 54 55.65 647 26.61 441 86.43 5.00 98 121
54-31 54 55.70 642 8.49 1.75 11.44 1.73 3 4
54-32 54 54.77 242 1.12 0.53 1.21 0.51 15 16
54-33 54 55.04 443 353 096 419 0.96 46 42
54-34 54 55.66 533 4.99 3.10 11.82 2.69 87 125
54-35 54 5472 133 056 0.33 0.43 0.34 0 1
54-36 54 5473 332 310 0.87 6.68 0.87 37 52
54-37 54 56.22 732 1669 291 12.05 2.81 51 54
54-38 54 5550 703 564 323 10.72 2.76 122 122
54-39 54 55.45 303 132 065 2.29 0.65 25 21

318 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
54-40 54 5524 503 3.69 1.10 495 1.11 56 51
54-41 54 55.76 603 4.53 1.24 5.47 1.26 43 42
54-42 54 57.00 1,103 1349 2.64 25.95 2.63 187 154
54-43 54 56.76 1,132 1850 5.08 28.81 4.72 170 207
54-44 54 56.74 1,137 26.00 4.83 24.26 4.69 164 209
54-45 54 5714 1,113 17.71 350 27.63 3.55 177 159
54-46 54 56.35 445 2.06 1.00 3.38 1.00 72 62
54-47 54 56.60 455 2.60 1.59 3.11 1.53 61 64
54-48 54 56.82 227 0.76 0.52 1.46 0.51 27 28
54-49 54 5654 419 1.96 0.94 2.33 0.91 100 80

57-0 57 58.50 29 0.11 0.11 0.11 0.11 4 4

57-1 57 59.11 147 0.60 0.46 0.41 0.46 20 20
57-2 57 58.48 67 0.24 0.17 0.28 0.19 0 0

57-3 57 58.32 107 0.38 0.30 0.40 0.30 14 12
57-4 57 59.04 65 0.32 0.17 0.36 0.17 9 8

57-5 57 58.61 259 244 0.72 3.72 0.74 46 52
57-6 57 58.12 99 0.56 0.25 0.28 0.24 16 16
57-7 57 5854 181 057 050 1.40 0.47 24 26
57-8 57 59.06 217 0.82 0.74 1.07 0.70 24 24
57-9 57 5757 57 0.21 0.15 0.35 0.17 6 6

57-10 57 5822 135 0.73 0.38 1.33 0.38 14 22
57-11 57 59.11 295 5.35 1.07 4.14 1.05 43 50
57-12 57 5855 285 1.13 0.83 1.38 0.81 40 40
57-13 57 57.66 125 0.42 0.29 0.57 0.29 0 0

57-14 57 58.79 205 0.57 0.68 1.71 0.62 34 46
57-15 57 58.47 245 0.79 1.32 0.96 1.05 40 40
57-16 57 5836 613 6.13 1.77 27.50 1.74 121 124
57-17 57 58.00 213 0.89 0.52 1.85 0.52 29 30
57-18 57 58.03 413 3.90 1.06 5.06 1.05 60 60

A.2 Evaluation of Scheduling Design | 319
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
57-19 57 58.62 513 4.52 2.81 8.62 2.40 94 116
57-20 57 5769 113 036 028 1.14 0.29 25 23
57-21 57 5851 313 187 097 1.87 0.91 50 51
57-22 57 59.07 713 1412 261 29.45 2.56 128 132
57-23 57 5892 737 5555 351 84.37 3.43 85 134
57-24 57 58.11 337 16.02 2.19 19.08 2.84 48 65
57-25 57 57.77 143 0.68 045 0.76 0.44 10 11
57-26 57 5850 543 1096 424 14.38 4.30 99 132
57-27 57 58.73 453 3.76 1.59 10.02 1.56 103 115
57-28 57 57.18 53 0.24 0.15 0.22 0.16 5 5
57-29 57 58.03 247 1.14 1.16 5.58 1.06 44 60
57-30 57 58.65 647 39.80 2.30 41.77 2.24 116 131
57-31 57 58.70 642 9.38 1.78 11.37 1.73 81 82
57-32 57 57.77 242 1.16 0.53 0.95 0.52 40 40
57-33 57 58.04 443 3.01 0.96 3.85 0.97 81 62
57-34 57 58.66 533 627 341 9.31 2.82 99 129
57-35 57 5772 133 0.62 0.34 0.67 0.33 0 1
57-36 57 57.73 332 244 088 6.12 0.87 46 55
57-37 57 59.22 732 3005 270 26.38 2.62 112 127
57-38 57 5850 703 9.21 3.27 16.72 2.82 128 130
57-39 57 58.45 303 130 0.65 2.81 0.64 25 26
57-40 57 58.24 503 2.96 1.13 5.61 1.14 54 50
57-41 57 58.76 603 4.28 1.27 5.74 1.26 57 53
57-42 57 60.00 1,103 12.62 273 20.61 2.63 179 154
57-43 57 59.76 1,132 16.91 5.08 18.26 4.74 208 208
57-44 57 59.74 1,137 2145 476 25.10 4.69 217 210
57-45 57 60.14 1,113 1820 3.59 312.08 3.43 157 199
57-46 57 5935 445 1.93 1.00 3.60 1.01 65 82
57-47 57 59.60 455 237 1.55 3.34 1.53 84 80

320 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
57-48 57 59.82 227 0.67 0.52 1.41 0.52 35 36
57-49 57 59.54 419 1.63 0.93 1.91 0.93 101 88

60-0 60 6150 29 0.12 0.11 0.10 0.11 4 4
60-1 60 6211 147 0.52 0.46 0.41 0.44 20 20
60-2 60 6148 67 0.25 0.17 0.31 0.18 0 0
60-3 60 6132 107 0.31 0.31 0.41 0.31 28 20
60-4 60 62.04 65 0.21 0.17 0.30 0.17 10 12
60-5 60 61.61 259 143 0.71 2.56 0.70 48 52
60-6 60 61.12 99 0.44 0.26 0.27 0.27 16 16
60-7 60 61.53 181 0.52 0.42 1.45 0.44 34 34
60-8 60 62.06 217 1.11 0.69 0.90 0.69 24 20
60-9 60 60.57 57 0.20 0.15 0.48 0.16 8 10
60-10 60 6122 135 054 0.50 0.61 0.48 20 20
60-11 60 62.11 295 1.59 1.09 1.54 1.05 40 42
60-12 60 6155 285 1.45 0.98 1.87 0.91 60 40
60-13 60 60.66 125 0.44 0.29 0.42 0.31 0 0
60-14 60 61.79 205 0.60 0.46 0.89 0.47 52 48
60-15 60 6147 245 0.81 1.18 0.97 0.96 40 40
60-16 60 6136 613 451 1.73 13.55 1.73 135 134
60-17 60 61.00 213 094 0.52 1.37 0.49 33 33
60-18 60 61.03 413 3.52 0.94 4.30 0.94 70 70
60-19 60 61.62 513 4.00 1.47 7.46 1.48 135 116
60-20 60 60.69 113 0.38 0.29 0.85 0.30 28 26
60-21 60 6151 313 1.88 0.97 2.16 0.91 50 51
60-22 60 62.07 713 11.64 2.67 27.32 2.58 135 143
60-23 60 6192 737 19.05 3.37 61.53 4.64 101 139
60-24 60 6111 337 2.53 1.51 2.95 1.41 50 51
60-25 60 60.77 143 1.18 0.13 1.48 0.14 21 NA
60-26 60 6150 543 543 212 9.90 2.07 70 64

A.2 Evaluation of Scheduling Design | 321
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
60-27 60 61.73 453 2.75 1.78 10.86 1.56 111 123
60-28 60 60.18 53 018 0.16 0.25 0.16 8 5
60-29 60 61.03 247 1.00 1.28 3.54 1.08 50 62
60-30 60 61.65 647 9.99 231 23.07 2.24 126 132
60-31 60 61.70 642 6.33 1.79 13.05 1.76 99 122
60-32 60 60.77 242 1.04 052 0.99 0.53 50 40
60-33 60 61.04 443 258 098 3.88 0.98 72 62
60-34 60 61.66 533 486 341 9.07 2.90 100 134
60-35 60 60.72 133 047 035 0.59 0.34 10 11
60-36 60 60.73 332 1.63 0.89 6.68 0.89 45 60
60-37 60 6222 732 1232 298 16.15 4.03 110 124
60-38 60 6150 703 455 330 17.83 2.90 143 138
60-39 60 6145 303 117 0.64 2.01 0.66 30 31
60-40 60 6124 503 261 1.16 6.33 1.16 63 48
60-41 60 61.76 603 3.76 1.27 474 1.25 70 65
60-42 60 63.00 1,103 1244 267 11.62 2.57 326 204
60-43 60 62.76 1,132 1421 5.69 19.44 5.27 219 218
60-44 60 62.74 1,137 1823 483 24.84 4.73 228 220
60-45 60 63.14 1,113 1653 358 27.68 3.54 272 308
60-46 60 6235 445 186 098 2.23 1.00 106 82
60-47 60 62.60 455 2.86 1.76 2.88 1.60 95 84
60-48 60 62.82 227 0.72 0.51 1.75 0.51 41 42
60-49 60 6254 419 193 092 2.35 0.97 110 88
63-0 63 64.50 29 0.11 0.12 0.16 0.12 4 4
63-1 63 65.11 147 0.77 0.44 0.51 0.45 20 20
63-2 63 64.48 67 026 0.17 0.25 0.18 0 0
63-3 63 6432 107 044 027 0.40 0.28 28 20
63-4 63 65.04 65 023 0.16 0.39 0.17 14 12
63-5 63 6461 259 090 072 2.71 0.70 56 58

322 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
63-6 63 6412 99 0.39 0.26 0.27 0.26 16 16
63-7 63 64.53 181 0.60 0.42 1.03 0.43 40 36
63-8 63 65.06 217 0.88 0.79 1.02 0.72 45 42
63-9 63 63.57 57 0.22 0.20 0.23 0.17 10 12
63-10 63 6422 135 051 0.50 0.54 0.47 20 20
63-11 63 6511 295 3.36 1.08 4.05 1.06 46 58
63-12 63 6455 285 1.37 0.83 1.70 0.80 40 40
63-13 63 63.66 125 0.44 0.29 0.36 0.30 0 0
63-14 63 64.79 205 0.62 0.46 0.97 0.48 56 52
63-15 63 6447 245 0.87 1.31 0.97 1.02 40 40
63-16 63 64.36 613 4.24 1.80 16.22 1.80 146 148
63-17 63 64.00 213 0.89 0.49 1.59 0.50 40 40
63-18 63 64.03 413 244 0.91 4.02 0.92 80 81
63-19 63 64.62 513 4.67 1.46 5.81 1.47 145 126
63-20 63 63.69 113 046 0.29 217 0.29 27 30
63-21 63 6451 313 2.03 0.95 2.20 0.92 50 51
63-22 63 65.07 713 1326 2.63 15.50 2.55 146 143
63-23 63 6492 737 9.28 4.75 12.79 411 155 157
63-24 63 6411 337 274 1.50 3.17 1.42 50 51
63-25 63 63.77 143 0.86 0.13 1.07 0.13 23 NA
63-26 63 6450 543 657 2.09 7.15 2.04 109 103
63-27 63 64.73 453 3.33 1.79 15.20 1.69 113 131
63-28 63 63.18 53 0.25 0.14 0.22 0.16 8 5
63-29 63 64.03 247 1.17 1.17 3.68 1.04 51 64
63-30 63 64.65 647 12.03 247 12.28 2.26 129 142
63-31 63 6470 642 6.33 1.97 10.02 1.75 97 122
63-32 63 63.77 242 1.02 0.54 0.79 0.54 50 40
63-33 63 64.04 443 237 1.00 3.73 1.07 82 82
63-34 63 64.66 533 4.92 2.28 5.20 2.19 104 105

A.2 Evaluation of Scheduling Design | 323
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
63-35 63 63.72 133 052 034 0.66 0.34 10 11
63-36 63 63.73 332 232 089 3.76 0.90 51 63
63-37 63 6522 732 1076 296 17.66 3.94 140 144
63-38 63 6450 703 3.61 3.25 12.23 2.87 148 146
63-39 63 6445 303 113 0.66 241 0.65 37 36
63-40 63 6424 503 241 2.60 4.70 2.15 71 106
63-41 63 6476 603 296 1.28 3.86 1.29 105 77
63-43 63 65.76 1,132 1484 3.80 40.55 3.61 255 258
63-44 63 65.74 1,137 13.06 4.58 21.47 4.56 270 259
63-45 63 66.14 1,113 13.75 3.66 25.23 3.40 298 318
63-46 63 6535 445 171 1.08 1.87 0.99 130 102
63-47 63 65.60 455 2.72 1.40 4.79 1.33 91 92
63-48 63 6582 227 070 052 1.18 0.51 46 46
63-49 63 6554 419 134 096 1.63 0.94 122 98
66-1 66 68.11 147 046 071 0.55 0.61 32 30
66-2 66 67.48 67 0.21 0.25 0.26 0.24 10 10
66-4 66 68.04 65 0.19 0.16 0.22 0.16 12 12
66-5 66 6761 259 085 071 2.21 0.70 67 58
66-6 66 6712 99 033 024 0.30 0.24 20 16
66-7 66 6754 181 052 042 1.00 0.42 40 38
66-9 66 66.57 57 0.19 0.15 0.29 0.16 14 12
66-11 66 68.11 295 1.58 1.12 2.05 1.05 40 42
66-12 66 6755 285 1.21 0.85 1.16 0.82 40 40
66-13 66 66.66 125 046 045 0.47 0.41 20 20
66-14 66 67.79 205 0.65 046 0.89 0.46 30 22
66-16 66 67.36 613 4.02 1.74 123.04 1.76 157 156
66-17 66 67.00 213 086 048 1.40 0.49 44 43
66-18 66 67.03 413 187 094 4.86 0.92 96 91
66-19 66 67.62 513 3.74 1.49 7.57 1.49 149 131

324 | Appendix

Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fyt5(s) Ffps(s) Ots(s) Ofps(s) Pis(s) prs(s)
66-20 66 66.69 113 1.18 0.29 1.39 0.32 32 31

66-22 66 68.07 713 10.18 2.66 18.23 2.59 172 158
66-23 66 6792 737 872 4.85 14.90 4.19 157 158
66-25 66 66.77 143 0.61 0.13 0.66 0.15 24 NA
66-26 66 67.50 543 548 2.02 8.56 1.95 113 103
66-27 66 67.73 453 293 1.34 8.82 1.34 148 135
66-28 66 66.18 53 0.19 0.15 0.21 0.15 8 5
66-29 66 67.03 247 1.68 0.72 191 0.73 73 70
66-30 66 67.65 647 7.62 2.30 13.05 2.30 169 147
66-32 66 66.77 242 1.12 0.51 0.92 0.53 40 40
66-33 66 67.04 443 250 0.98 3.23 0.96 109 82
66-34 66 67.66 533 3.61 3.10 8.52 2.62 124 157
66-35 66 66.72 133 0.57 0.09 0.50 0.10 29 NA
66-36 66 66.73 332 343 0.89 8.67 0.87 82 74
66-37 66 6822 732 1037 312 19.64 3.94 146 164
66-38 66 67.50 703 3.05 3.28 10.21 2.82 167 157
66-39 66 67.45 303 1.03 0.64 1.63 0.64 52 43
66-40 66 6724 503 2.04 1.13 5.43 1.10 96 114
66-41 66 67.76 603 2.86 1.29 4.22 1.29 109 90
66-43 66 68.76 1,132 13.03 3.71 41.42 3.67 265 259
66-45 66 69.14 1,113 1352 3.56 44.30 3.47 280 254
66-47 66 68.60 455 242 1.35 4.47 1.32 100 100
66-48 66 68.82 227 0.54 0.50 1.34 0.52 50 50

69-4 69 71.04 65 0.23 0.16 0.17 0.18 14 12
69-5 69 70.61 259 1.06 0.73 2.04 0.74 89 60
69-6 69 70.12 99 0.33 0.24 0.37 0.25 24 16

69-7 69 70.54 181 0.58 0.41 0.89 0.42 40 42
69-9 69 69.57 57 0.18 0.16 0.41 0.16 12 14
69-11 69 7111 295 1.47 1.09 3.69 1.05 69 66

A.2 Evaluation of Scheduling Design | 325
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
69-13 69 69.66 125 037 045 0.40 0.39 20 20
69-16 69 70.36 613 3.52 1.78 9.48 1.75 179 167
69-17 69 70.00 213 072 0.50 1.18 0.49 55 50
69-18 69 70.03 413 183 097 3.45 0.93 105 102
69-19 69 70.62 513 3.38 1.51 5.54 1.46 168 136
69-20 69 69.69 113 072 029 2.42 0.29 39 32
69-22 69 71.07 713 732 279 12.30 2.65 191 173
69-23 69 7092 737 9.67 3.82 20.82 494 102 118
69-27 69 70.73 453 2.46 1.37 7.45 1.36 148 143
69-28 69 69.18 53 020 0.15 0.21 0.15 15 10
69-29 69 70.03 247 0.98 0.71 2.12 0.69 76 72
69-30 69 70.65 647 682 235 11.39 2.27 199 167
69-31 69 70.70 642 5.08 1.80 8.51 1.79 127 122
69-32 69 69.77 242 086 052 0.91 0.53 60 40
69-34 69 70.66 533 271 3.44 10.39 2.78 148 163
69-36 69 69.73 332 344 090 6.20 0.87 73 78
69-37 69 7122 732 991 4.28 21.44 3.75 174 170
69-38 69 7050 703 351 3.26 8.70 2.82 177 166
69-39 69 7045 303 1.00 0.64 2.48 0.65 49 50
69-40 69 70.24 503 2.20 1.16 2.45 1.18 129 123
69-41 69 70.76 603 2.56 1.30 5.62 1.27 114 104
69-43 69 7176 1,132 16.66 1.19 33.28 1.21 285 NA
69-45 69 7214 1,113 15.09 3.73 32.09 3.54 305 319
69-47 69 71.60 455 2.45 0.46 4.64 0.48 120 NA
69-48 69 71.82 227 073 0.15 0.83 0.16 68 NA
72-4 72 74.04 65 0.16 0.17 0.23 0.18 26 8
72-5 72 73.61 259 083 0.73 222 0.71 92 74
72-7 72 7354 181 049 0.42 0.56 0.43 51 52

729 72 7257 57 017 0.16 0.19 0.16 18 14

326 | Appendix

Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fyt5(s) Ffps(s) Ots(s) Ofps(s) Pis(s) prs(s)
72-10 72 7322 135 0.89 0.39 0.99 0.40 27 36

72-16 72 7336 613 291 1.75 10.44 1.75 186 181
72-17 72 73.00 213 0.75 0.48 1.38 0.49 56 55
72-18 72 73.03 413 1.66 0.93 3.45 0.94 118 113
72-19 72 7362 513 327 1.51 524 1.49 160 151
72-20 72 72.69 113 0.30 0.29 0.83 0.30 39 33
72-22 72 74.07 713 6.52 2.67 13.68 2.58 180 173
72-23 72 7392 737 1084 1.13 16.96 1.19 208 NA
72-27 72 73.73 453 1.95 1.36 4.64 1.32 160 147
72-29 72 73.03 247 2.30 0.73 6.62 0.73 85 75
72-30 72 73.65 647 6.64 2.38 10.50 2.29 185 182
72-31 72 7370 642 4.65 1.93 8.63 1.86 126 124
72-34 72 73.66 533 235 3.52 6.18 2.86 150 168
72-36 72 7273 332 207 0.89 4.54 0.90 78 83
72-38 72 7350 703 243 3.27 5.34 2.84 193 177
72-39 72 7345 303 0.74 0.64 237 0.66 64 57
72-40 72 7324 503 2.00 1.17 2.55 1.15 142 133
72-41 72 7376 603 211 1.32 4.59 1.27 126 119
72-43 72 7476 1,132 1155 1.20 21.37 1.23 324 NA
72-48 72 74.82 227 0.55 0.15 0.88 0.15 78 NA
72-49 72 7454 419 0.96 0.96 1.35 0.98 155 134
75-4 75 77.04 65 0.17 0.22 0.17 0.21 26 20
75-5 75 76.61 259 1.25 0.70 1.79 0.71 78 76
757 75 76.54 181 0.61 0.43 0.51 0.44 66 54
75-10 75 76.22 135 0.58 0.39 1.21 0.39 46 40
75-11 75 7711 295 1.37 0.35 295 0.34 72 NA
75-16 75 76.36 613 227 1.75 6.74 1.71 212 189
75-17 75 76.00 213 0.57 0.49 0.85 0.48 70 62
75-18 75 76.03 413 1.14 0.92 1.63 0.91 153 123

A.2 Evaluation of Scheduling Design | 327
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
75-20 75 75.69 113 040 0.29 0.39 0.30 47 35
75-22 75 77.07 713 7.30 2.89 10.61 2.65 192 188
75-23 75 7692 737 1470 3.72 22.55 498 229 229
75-27 75 76.73 453 211 1.34 3.58 1.30 191 156
75-29 75 76.03 247 095 0.70 4.64 0.70 86 78
75-30 75 76.65 647 6.62 234 11.46 2.28 229 194
75-31 75 7670 642 498 8.17 481 5.62 203 202
75-36 75 7573 332 190 0.89 6.44 0.89 116 100
75-38 75 7650 703 3.03 337 491 2.92 189 191
75-39 75 7645 303 076 0.64 1.94 0.66 72 65
75-40 75 76.24 503 1.34 1.14 3.23 1.18 167 143
75-41 75 76.76 603 1.78 1.33 3.47 1.31 136 135
75-43 75 77.76 1,132 1291 1.22 15.41 1.23 393 NA
75-44 75 7774 1,137 19.87 4.69 31.70 4.74 393 419
78-16 78 79.36 613 261 1.76 9.34 1.76 209 207
78-17 78 79.00 213 062 048 1.00 0.49 84 65
78-18 78 79.03 413 137 094 1.29 0.96 207 133
78-26 78 7950 543 578 394 11.11 3.36 196 197
78-27 78 79.73 453 1.75 1.35 3.48 1.34 201 160
78-29 78 79.03 247 085 071 4.26 0.70 103 83
78-33 78 79.04 443 1.37 1.01 1.48 0.99 178 139
78-36 78 7873 332 161 0.89 297 0.90 105 104
78-39 78 7945 303 085 0.66 1.34 0.65 83 73
78-44 78 80.74 1,137 2243 4.73 37.24 4.70 447 442
81-17 81 82.00 213 055 049 0.92 0.52 98 72
81-18 81 82.03 413 1.13 0.93 1.73 0.92 166 143
81-21 81 8251 313 0.99 0.86 1.66 0.87 125 107
81-43 81 83.76 1,132 793 4.02 16.99 3.90 431 413
84-24 84 85.11 337 2.88 1.19 6.87 1.16 135 121

328 | Appendix
Table A.15: Results for Benchmark 2 - SBP.

M Uep(%) U(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
84-25 84 84.77 143 047 0.47 0.97 0.44 61 38
87-24 87 88.11 337 1.85 1.16 3.27 1.19 131 120

Table A.16: Results for Benchmark 2 - PTP.

M Up®) U%) T Fus(s) Fppels) Ope(s) Oppu(s) Piss(s) Prps(o)
30-0 30 34.93 16 0.08 0.08 0.14 0.10 0 0
30-1 30 40.65 78 0.29 0.30 0.29 0.31 0 0

30-10 30 4431 76 0.27 0.30 0.48 0.32 3 6
30-11 30 38.07 156 0.80 0.65 0.83 0.69 0 1
30-12 30 38.88 152 0.62 0.49 0.66 0.52 0 0
30-13 30 4456 71 0.23 0.22 0.24 0.23 1 1
30-15 30 4225 142 048 0.39 0.49 0.38 0 0
30-16 30 4363 707 7.3 270 32.85 2.57 84 85
30-19 30 4588 657 5.39 228 22.64 2.35 86 86
30-2 30 3539 38 0.14 0.13 0.19 0.14 0 0
30-21 30 38.89 357 280 1.17 9.20 1.18 34 40
30-22 30 4690 757 792 313 31.72 3.29 52 48
30-23 30 4734 777 1317 420 73.65 4.10 52 68
30-24 30 4559 377 254 1.51 10.97 1.54 28 34
30-25 30 39.27 197 0.89 0.60 1.34 0.63 0 11
30-27 30 3468 627 547 194 16.80 2.06 87 86
30-28 30 4174 67 0.23 0.19 0.33 0.20 0 0
30-29 30 3352 327 1.85 1.00 7.03 0.99 33 34
30-3 30 4530 68 0.21 0.23 0.33 0.23 5 5
30-30 30 3761 727 821 313 23.06 292 58 57
30-31 30 4116 722 6.31 242 10.74 2.35 3 3
30-35 30 33.01 192 0.66 0.50 1.15 0.50 10 11
30-36 30 33.62 372 199 1.43 4.24 1.44 19 29
30-37 30 4552 772 1083 377 13.70 7.15 22 44

A.2 Evaluation of Scheduling Design

Table A.16: Results for Benchmark 2 - PTP.

| 329

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
30-4 30 46.89 37 0.13 0.12 0.21 0.13 0 0
30-44 30 4096 1577 1410 6.77 23994 6.66 215 213
30-47 30 45.69 316 1.91 0.98 3.23 1.01 21 25
30-5 30 4546 146 0.53 0.48 1.23 0.50 12 17
30-6 30 35.35 66 0.29 0.19 0.25 0.20 0 0
30-8 30 39.28 136 0.55 0.47 0.83 0.47 10 10
30-9 30 39.77 40 0.14 0.13 0.22 0.15 2 2
33-0 33 37.93 16 0.08 0.08 0.14 0.09 0 0
33-1 33 43.65 78 0.26 0.29 0.39 0.30 0 0
33-10 33 47.31 76 0.29 0.31 0.66 0.44 4 10
33-11 33 41.07 156 0.76 0.68 1.16 0.68 5 10
33-12 33 41.88 152 0.69 0.49 0.67 0.51 0 0
33-13 33 47.56 71 0.24 0.22 0.34 0.23 1 1
33-16 33 46.63 707 6.93 2.66 26.97 2.59 98 96
33-19 33 48.88 657 5.18 2.34 26.46 2.39 100 102
33-2 33 38.39 38 0.14 0.13 0.16 0.16 0 0
33-21 33 4189 357 221 1.20 8.53 1.20 42 43
33-22 33 4990 757 9.29 3.08 23.08 3.17 52 57
33-23 33 5034 777 1665 448 11916 5.82 63 73
33-24 33 4859 377 340 1.77 12.44 1.77 35 46
33-25 33 4227 197 0.87 0.60 1.14 0.64 0 11
33-26 33 4622 677 < 7.74 294 19.25 4.04 52 63
33-27 33 37.68 627 547 2.08 20.85 2.01 95 115
33-29 33 36.52 327 191 1.03 5.97 1.05 34 38
33-3 33 48.30 68 0.21 0.21 0.31 0.23 5 10
33-30 33 40.61 727 10.69 3.03 77.09 3.05 62 87
33-31 33 4416 722 6.16 231 12.25 2.52 3 3
33-35 33 36.01 192 0.65 0.49 1.12 0.50 10 11
33-36 33 36.62 372 2.14 1.48 4.46 1.40 23 32

330 |

Table A.16: Results for Benchmark 2 - PTP.

Appendix

M Up(%) Ud%)] Fus(s) Frps(s) Ous(s) Ogfps() Piss(s) Prys(s)
3337 33 4852 772 1123 395 2830 390 32 54
334 33 4989 37 014 012 022 014 0 0
3341 33 5004 702 541 181 858 203 4 4
33-44 33 4396 1577 1673 686 8866 689 241 224
33-47 33 4869 316 181 101 287 103 32 41
335 33 4846 146 057 046 091 049 0 0
33-6 33 3835 66 027 019 024 021 0 0
339 33 4277 40 017 013 018 0.14 2 2
360 36 4093 16 008 008 012 0.09 0 0
31 36 4665 78 026 029 035 031 0 0
3610 36 5031 76 025 032 042 043 4 10
36-11 36 4407 156 074 064 111 067 0 1
3612 36 4488 152 060 049 063 051 0 0
36-16 36 4963 707 549 287 2407 287 106 111
3619 36 5188 657 514 256 2211 260 110 109
32 36 4139 38 014 013 016 015 0 0
3621 36 4489 357 257 126 1104 125 45 46
3622 36 5290 757 855 320 1666 335 54 3
3623 36 5334 777 1289 434 4931 610 67 89
3624 36 5159 377 437 181 960 177 38 52
3625 36 4527 197 088 064 128 0.62 0 11
3627 36 4068 627 481 220 1838 222 123 124
3628 36 4774 67 022 021 044 024 5 5
3629 36 3952 327 190 103 981 107 41 44
33 36 5130 68 020 022 028 022 10 10
3630 36 4361 727 958 327 3235 334 87 92
3631 36 4716 722 622 244 1122 247 4 4
3635 36 3901 192 065 050 100 052 10 11
3636 36 3962 372 784 145 365 138 26 35

A.2 Evaluation of Scheduling Design | 331
Table A.16: Results for Benchmark 2 - PTP.
M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
36-37 36 5152 772 4010 3.19 3453 3.20 42 54
36-4 36 5289 37 014 012 0.16 0.14 0 0
36-40 36 5291 652 487 1.61 7.01 1.71 102 102
36-42 36 4690 1,552 11.89 3.88 58.33 3.92 243 308
36-44 36 4696 1,577 1522 7.01 80.89 6.97 242 263
36-47 36 51.69 314 1.35 1.04 5.96 1.06 72 74
36-5 36 5146 146 057 048 0.76 0.51 0 1
36-6 36 4135 66 025 0.19 0.25 0.21 0 0
36-9 36 45.77 40 0.14 0.13 0.19 0.14 0 4
39-0 39 4393 16 0.08 0.08 0.13 0.11 0 0
39-1 39 4965 78 026 028 0.42 0.32 0 0
39-11 39 47.07 156 0.79 0.63 1.32 0.67 8 12
39-12 39 4788 152 063 049 0.92 0.52 0 0
39-16 39 5263 707 610 3.09 2330 2.96 118 122
39-18 39 4784 607 4.68 143 8.38 1.46 116 112
39-19 39 5488 657 486 270 2233 2.75 122 124
39-2 39 4439 38 014 013 0.16 0.13 0 0
39-21 39 4789 357 235 126 1542 1.24 53 53
39-22 39 5590 757 7.68 321 4356 3.14 72 78
39-23 39 56.34 777 1861 499 5886 4.75 95 109
39-24 39 5459 377 3.63 1.89 11.09 1.84 45 55
39-25 39 48.27 197 0.84 0.61 1.27 0.63 0 11
39-26 39 5222 677 6.55 2.77 13.96 2.85 140 102
39-27 39 43.68 627 4.70 2.26 19.84 2.29 136 134
39-28 39 50.74 67 0.21 0.19 0.24 0.21 10 10
39-29 39 4252 327 1.82 1.29 10.64 1.68 50 64
39-3 39 5430 68 019 021 0.25 0.22 11 10
39-30 39 46.61 727 1155 345 2892 3.31 94 102
39-31 39 50.16 722 613 230 14.10 2.39 4 5

332 |

Table A.16: Results for Benchmark 2 - PTP.

Appendix

M Uep(%) Ur(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
39-35 39 42.01 192 0.65 0.49 1.12 0.52 10 11
39-36 39 42,62 372 2.09 1.64 5.60 1.54 31 47
39-37 39 5452 772 1130 3.71 24.12 5.19 57 104

39-4 39 55.89 37 0.14 0.12 0.21 0.13 0 0
39-40 39 5591 652 4.80 1.70 7.34 1.55 102 102
39-42 39 4990 1,552 1183 3.99 66.63 413 332 308
39-44 39 4996 1,577 1610 6.92 84.87 6.81 266 313
39-47 39 54.69 314 1.31 1.09 3.88 1.08 75 80

39-5 39 5446 146 0.57 0.47 0.84 0.49 0 2

39-6 39 44.35 66 0.23 0.19 0.33 0.20 0 1

39-9 39 48.77 40 0.14 0.13 0.24 0.15 3 5
42-0 42 46.93 16 0.08 0.08 0.12 0.10 0 0
42-1 42 52.65 78 0.27 0.28 0.35 0.30 0 0
42-11 42 50.07 156 0.76 0.64 0.92 0.66 0 1
42-12 42 50.88 152 0.59 0.48 0.62 0.49 0 0
42-14 42 4990 132 0.40 0.34 0.49 0.35 20 20
42-18 42 50.84 607 4.63 1.42 7.95 1.49 134 122
42-2 42 47.39 38 0.13 0.14 0.20 0.14 0 0
42-21 42 50.89 357 213 1.30 5.73 1.29 55 56
42-23 42 5934 777 1986 4.76 49.61 4.78 98 114
42-24 42 5759 377 486 2.29 12.58 2.09 47 64
42-25 42 51.27 197 0.83 0.62 1.60 0.65 20 21
42-27 42 46.68 627 444 2.60 20.01 2.55 144 143
42-28 42 53.74 67 0.21 0.20 0.28 0.22 10 10
42-29 42 4552 327 1.98 1.47 17.04 1.40 66 70
42-3 42 57.30 68 0.19 0.20 0.29 0.21 11 10
42-30 42 4961 727 1064 3.78 55.89 3.65 98 123
42-31 42 53.16 722 6.09 2.30 10.50 247 5 5
42-32 42 51.13 322 1.16 0.99 2.07 0.94 60 61

A.2 Evaluation of Scheduling Design | 333

Table A.16: Results for Benchmark 2 - PTP.

M Uep(%) U(%) J Fit5(s) Ffps(s) Ons(s) Ofps(s) Pis(s) prs(s)
42-34 42 55.99 672 4.40 2.26 18.26 2.27 113 132

42-35 42 45.01 192 0.65 0.49 1.15 0.50 10 21
42-36 42 45.62 372 1.93 1.57 5.99 1.53 49 50
42-37 42 5752 772 7.38 3.45 25.45 4.87 49 114
42-4 42 58.89 37 0.13 0.12 0.16 0.14 0 0
42-44 42 5296 1,577 1776 7.18 63.61 7.07 331 324
42-47 42 57.69 314 1.39 1.15 4.47 1.17 83 95
42-6 42 47.35 66 0.26 0.19 0.24 0.20 0 1
42-8 42 51.28 136 0.51 0.45 0.87 0.48 20 20

42-9 42 51.77 40 0.15 0.13 0.31 0.15 4 5

45-0 45 49.93 16 0.08 0.08 0.13 0.09 0 0

45-1 45 55.65 78 0.27 0.28 0.42 0.29 0 0
45-11 45 53.07 15 0.78 0.63 2.33 0.66 8 12
45-12 45 5388 152 0.59 0.50 0.80 0.52 0 0

45-19 45 60.88 657 4.62 221 20.89 224 151 153
45-2 45 50.39 38 0.13 0.13 0.22 0.14 0 0
45-21 45 5389 357 171 1.17 7.31 1.21 63 64
45-22 45 6190 757 8.20 3.18 26.26 3.35 116 93
45-23 45 6234 777 4251 446 45.59 4.39 109 129
45-24 45 60.59 377 4.65 237 25.58 2.32 57 71
45-25 45 5427 197 0.82 0.62 2.31 0.63 20 21
45-27 45 49.68 627 419 3.10 19.23 3.02 148 154

45-28 45 56.74 67 0.21 0.20 0.23 0.22 12 10
45-29 45 4852 327 262 1.54 8.29 1.47 73 74
45-3 45 60.30 68 0.19 0.21 0.31 0.22 11 10

45-30 45 5261 727 9.15 4.12 20.59 3.94 108 133
45-31 45 56.16 722 6.21 2.48 13.55 243 5 5
45-32 45 5413 322 1.07 0.80 1.62 0.79 80 80
45-34 45 5899 672 4.29 227 14.82 2.48 120 139

334 | Appendix

Table A.16: Results for Benchmark 2 - PTP.

M Uep(%) Ur(%) J Fyts(s) Ffps(s) Ots(s) Ofps(s) Pis(s) prs(s)
45-35 45 48.01 192 0.64 0.48 1.25 0.50 10 21

45-36 45 48.62 372 1.69 1.62 5.50 1.53 52 54
45-37 45 6052 772 9.28 3.68 26.10 4.89 119 124
45-4 45 61.89 37 0.14 0.12 0.15 0.14 0 0
45-44 45 5596 1,577 1570 6.99 82.74 7.12 350 374
45-47 45 60.69 314 1.24 1.02 3.86 1.04 91 99

45-6 45 50.35 66 0.22 0.18 0.24 0.20 0 1
45-9 45 54.77 40 0.13 0.14 0.33 0.14 6 7
48-0 48 52.93 16 0.07 0.09 0.10 0.10 2 2
48-1 48 58.65 78 0.25 0.30 0.28 0.31 10 10
48-10 48 62.31 76 047 0.27 0.61 0.29 11 15
48-11 48 56.07 156 0.92 0.67 1.87 0.69 19 23
48-12 48 56.88 152 0.57 0.49 1.54 0.51 0 0
48-14 48 5590 132 035 0.40 0.95 0.40 31 29
48-2 48 53.39 38 0.13 0.13 0.18 0.14 0 0

48-21 48 56.89 357 1.61 1.16 5.28 1.20 67 72
48-22 48 6490 757 8.14 3.32 18.68 4.82 54 55
48-23 48 65.34 777 1397 396 42.06 4.01 111 144
48-24 48 63.59 377 2.63 2.09 12.17 2.03 61 75
48-25 48 5727 197 0.81 0.62 1.37 0.64 20 21
48-27 48 52.68 627 4.09 2.34 15.26 2.32 160 164
48-29 48 51.52 327 251 1.46 7.89 1.39 77 81
48-3 48 63.30 68 0.19 0.20 0.37 0.22 11 12
48-30 48 55.61 727 1150 3.89 25.67 3.94 122 138
48-31 48 59.16 722 6.25 2.57 9.01 2.62 103 104
48-32 48 57.13 322 1.02 0.78 2.90 0.80 89 85
48-35 48 51.01 192 0.64 0.48 1.11 0.50 10 21
48-36 48 51.62 372 4.88 1.21 13.92 1.15 56 65
48-37 48 63.52 772 9.08 3.53 36.62 3.46 142 135

A.2 Evaluation of Scheduling Design | 335

Table A.16: Results for Benchmark 2 - PTP.

M Uep(%) U(%) J Fit5(s) Ffps(s) Ons(s) Ofps(s) Pis(s) prs(s)
48-4 48 64.89 37 0.13 0.13 0.15 0.14 5 5

48-44 48 5896 1,577 1594 7.11 62.37 7.16 421 414
48-47 48 63.69 314 124 1.01 3.70 1.03 99 105
48-5 48 6346 146 048 0.48 1.78 0.49 36 34
48-6 48 53.35 66 0.21 0.19 0.24 0.21 12 12

48-9 48 57.77 40 0.14 0.13 0.33 0.15 7 7
51-0 51 55.93 16 0.08 0.08 0.12 0.10 1 1
51-1 51 61.65 78 0.30 0.29 0.44 0.31 0 0
51-10 51 65.31 76 0.25 0.27 0.80 0.29 13 15

51-11 51 59.07 156 0.70 0.67 2.39 0.67 27 27
51-12 51 59.88 152 0.56 0.54 0.73 0.57 20 20
51-14 51 5890 132 035 0.40 0.67 0.39 32 31
51-2 51 56.39 38 0.13 0.12 0.16 0.13 0 0

51-23 51 6834 777 1095 4.08 46.74 4.06 157 165
51-24 51 66.59 377 3312 159 11.79 1.63 88 94
51-25 51 60.27 197 155 0.18 2.68 0.21 40 NA
51-27 51 55.68 627 3.80 2.37 13.21 2.45 173 190
51-28 51 62.74 67 0.21 0.19 0.27 0.21 12 10
51-29 51 5452 327 1.39 1.43 6.61 1.33 84 83
51-30 51 58.61 727 1358 3.16 19.91 3.18 122 163
51-31 51 6216 722 6.32 2.59 8.82 2.59 104 104
51-32 51 60.13 322 1.39 0.80 1.80 0.79 61 81
51-35 51 5401 192 0.63 0.47 1.25 0.50 10 21
51-36 51 5462 372 3.88 1.20 20.43 1.20 60 68
51-37 51 66.52 772 8.50 3.49 28.17 3.52 134 145
51-4 51 67.89 37 0.12 0.13 0.17 0.14 5 5

51-44 51 6196 1,577 1552 7.36 52.63 7.03 474 424
51-6 51 56.35 66 0.20 0.20 0.28 0.21 12 12
51-8 51 60.28 136 0.48 0.47 0.99 0.47 21 20

336 | Appendix

Table A.16: Results for Benchmark 2 - PTP.

M Uep(%) Ur(%) J Fyts(s) Ffps(s) Ots(s) Ofps(s) Pis(s) prs(s)
51-9 51 60.77 40 0.14 0.13 0.24 0.13 8 8

54-0 54 58.93 16 0.08 0.09 0.09 0.11 2 2
54-11 54 62.07 156 0.68 0.69 0.90 0.70 20 21
54-14 54 6190 132 032 0.35 0.61 0.36 34 40

54-2 54 59.39 38 0.14 0.13 0.16 0.15 0 0
54-21 54 62.89 357 2.58 1.17 7.64 1.20 83 84
54-23 54 7134 777 11.07 443 30.14 4.06 162 170
54-24 54 69.59 377 3.17 1.67 12.88 1.69 90 101
54-25 54 63.27 197 1.13 0.17 1.69 0.21 50 NA
54-27 54 58.68 627 394 2.40 12.26 2.45 200 196
54-29 54 5752 327 143 1.56 6.95 1.46 86 91
54-30 54 6l1.61 727 852 3.20 24.36 3.00 170 173
54-35 54 5701 192 0.62 0.48 1.25 0.50 10 21
54-36 54 57.62 372 1.59 1.20 5.39 1.20 67 72
54-37 54 69.52 772 643 4.19 10.74 3.95 156 154

54-4 54 70.89 37 0.12 0.12 0.18 0.14 10 8

54-5 54 6946 146 043 0.48 1.14 0.49 40 38

54-6 54 59.35 66 0.23 0.19 0.25 0.20 16 16

54-8 54 6328 136 047 0.47 0.83 0.48 26 22

54-9 54 63.77 40 0.13 0.13 0.31 0.15 9 11
57-0 57 61.93 16 0.08 0.09 0.11 0.10 2 2
57-11 57 65.07 156 0.74 0.67 1.78 0.68 29 31

57-14 57 6490 132 0.30 0.34 0.43 0.35 44 42
57-2 57 62.39 38 0.14 0.13 0.20 0.14 0 0
57-21 57 65.89 357 1.92 1.25 2.34 1.26 51 51
57-23 57 7434 777 1130 4.37 36.61 5.75 221 215
57-25 57 66.27 197 0.74 0.18 0.99 0.20 50 NA
57-27 57 61.68 627 4.00 2.76 16.37 2.66 211 211
57-29 57 60.52 327 1.47 1.60 5.56 1.49 92 98

A.2 Evaluation of Scheduling Design | 337
Table A.16: Results for Benchmark 2 - PTP.

M Uep(%) U(%) J Fus(s) Frps(s) Ous(s) Opps(s) Pus(s) Prps(s)
57-30 57 64.61 727 7.23 3.11 21.57 3.07 194 178
57-31 57 68.16 722 5.40 2.33 16.27 2.38 145 164
57-32 57 66.13 322 125 076 1.55 0.80 99 81
57-35 57 60.01 192 0.62 047 0.83 0.50 10 21
57-36 57 60.62 372 1.77 1.21 497 1.17 70 76
57-37 57 7252 772 8.04 360 29.13 3.99 173 175
57-4 57 73.89 37 013 0.12 0.13 0.15 8 8
57-6 57 6235 66 0.21 0.19 0.22 0.21 16 16
57-9 57 66.77 40 0.13 0.13 0.26 0.14 11 12
60-12 60 68.88 152 054 054 0.82 0.58 31 30
60-14 60 6790 132 029 035 0.44 0.38 48 44

60-2 60 65.39 38 014 013 0.16 0.14 0 0
60-22 60 7690 757 6.44 3.47 19.65 4.96 229 199
60-23 60 7734 777 1012 441 38.95 4.26 252 240
60-27 60 6468 627 3.68 293 1286 2.90 221 222
60-29 60 63.52 327 147 1.60 19.38 1.52 100 101
60-30 60 6761 727 685 313 19.69 3.00 229 193
60-31 60 7116 722 509 238 11.89 2.59 165 165
60-32 60 69.13 322 116 078 1.50 0.79 81 81
60-35 60 63.01 192 0.61 0.49 0.94 0.50 20 31
60-36 60 63.62 372 1.38 1.21 6.16 1.22 81 82
60-37 60 75.52 772 7.58 1.03 24.39 1.06 197 NA
60-4 60 76.89 37 0.12 0.12 0.19 0.14 10 8
60-5 60 7546 146 041 0.48 0.95 0.50 42 46
60-6 60 65.35 66 0.19 0.19 0.25 0.22 18 16
60-9 60 69.77 40 012 013 0.24 0.16 13 13
63-11 63 71.07 156 072 0.67 1.35 0.68 37 35
63-14 63 7090 132 027 0.35 0.48 0.36 58 46
63-2 63 68.39 38 013 013 0.16 0.15 0 1

338 |

Table A.16: Results for Benchmark 2 - PTP.

Appendix

M Uep(%) Ur(%) J Fius(s) Frps(s) Ous(s) Opps(8) Pus(s) Prps(s)
63-27 63 67.68 627 298 2.07 15.63 2.14 245 244
63-29 63 66.52 327 1.57 1.00 547 1.03 105 120
63-31 63 7416 722 5.03 2.60 9.59 2.58 167 165
63-35 63 66.01 192 0.58 0.13 0.76 0.14 51 NA
63-36 63 66.62 372 275 1.22 6.96 1.21 95 94

63-9 63 72.77 40 0.25 0.13 0.33 0.14 13 14
66-27 66 70.68 627 2.88 1.98 12.89 2.10 258 256
66-29 66 69.52 327 1.77 1.03 10.11 1.02 124 123
66-36 66 69.62 372 1.96 1.22 7.36 1.21 108 99
69-11 69 77.07 156 0.62 0.20 1.01 0.21 50 NA
69-27 69 73.68 627 239 1.97 13.80 2.06 279 268
69-29 69 7252 327 1.06 1.01 3.24 1.01 142 131
69-36 69 72.62 372 1.97 1.24 5.80 1.24 107 105
72-27 72 76.68 627 2.30 2.04 6.24 2.06 288 284
72-29 72 7552 327 1.11 1.01 2.84 1.01 142 135
72-36 72 75.62 372 1.72 1.25 8.62 1.20 128 123
75-27 75 79.68 627 1.86 211 5.27 2.14 307 296
75-29 75 78.52 327 0.88 1.00 6.50 1.03 155 143
75-36 75 78.62 372 1.41 1.23 5.28 1.23 127 129
78-29 78 81.52 327 081 1.02 2.28 1.02 151 151

References | 339

References

[1]

[4]

[5]

[6]

[9]

[10]

N. Navet and F. Simonot-Lion. Automotive embedded systems handbook. CRC
press, 2017.

D. Claraz, S. Kuntz, U. Margull, M. Niemetz, and G. Wirrer. “Deterministic Ex-
ecution Sequence in Component Based Multi-Contributor Powertrain Control
Systems”. In: Embedded Real Time Software and Systems (ERTS2012). Toulouse,
France, 2012.

G. Macher, A. Holler, E. Armengaud, and C. Kreiner. “Automotive embedded
software: Migration challenges to multi-core computing platforms”. In: IEEE
13th International Conference on Industrial Informatics (INDIN). 2015, pp. 1386~
1393.

S. Kehr, E. Quiniones, B. Boddeker, and G. Schéifer. “Parallel Execution of
AUTOSAR Legacy Applications on Multicore ECUs with Timed Implicit Com-
munication”. In: ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE,
2015, pp. 1-6.

B. B. Brandenburg, J. M. Calandrino, A. Block, H. Leontyev, and J. H. Anderson.
“Real-Time Synchronization on Multiprocessors: To Block or Not to Block, to
Suspend or Spin?” In: IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS). 2008, pp. 342-353.

C. M. Kirsch and A. Sokolova. “The Logical Execution Time Paradigm”. In:
Advances in Real-Time Systems (ARTS). Springer, 2012, pp. 103-120.

T. A. Henzinger, B. Horowitz, and C. M. Kirsch. “Giotto: A Time-Triggered
Language for Embedded Programming”. In: Embedded Software. Vol. 2211.
Lecture Notes in Computer Science. Springer, 2001, pp. 166-184.

S. Resmerita, A. Naderlinger, M. Huber, K. Butts, and W. Pree. “Applying
Real-Time Programming to Legacy Embedded Control Software”. In: IEEE
International Symposium on Real-Time Distributed Computing (ISORC). IEEE, 2015,
pp- 1-8.

S. Resmerita, A. Naderlinger, and S. Lukesch. “Efficient Realization of Logical
Execution Times in Legacy Embedded Software”. In: ACM-IEEE International

Conference on Formal Methods and Models for System Design (MEMOCODE).
ACM, 2017, pp. 36-45.

C. Sofronis, S. Tripakis, and P. Caspi. “A Memory-Optimal Buffering Protocol
for Preservation of Synchronous Semantics Under Preemptive Scheduling”. In:
ACM and IEEE International Conference on Embedded Software (EMSOFT). ACM,
2006, pp. 21-33.

340 |

[11]

[12]

[13]

[14]

[15]

[16]
[17]
[18]
[19]

[20]

[21]

[22]

[23]

References

F. Scheler and W. Schroder-Preikschat. “The RTSC: Leveraging the Migration
from Event-Triggered to Time-Triggered Systems”. In: 13th IEEE International

Symposium on Object/Component/Service-Oriented Real-Time Distributed Comput-
ing. 2010, pp. 3441.

E.Yip, E. Lalo, G. Liittgen, and A. Sailer. “Lightweight Semantics-Preserving
Communication for Real-Time Automotive Software”. In: IEEE 13th Interna-
tional Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC).
2019, pp. 372-379.

E. Yip, E. Lalo, G. Liittgen, M. Deubzer, and A. Sailer. Optimized Buffering of
Time-Triggered Automotive Software. eng. Tech. rep. Bamberg, 2018, pp. 76, 8.
DOI: 10.20378/1rbo—-52917. URL: https://fis.uni-bamberg.de/
handle/uniba/44463.

E. Lalo, R. Weber, A. Sailer, J. Mottok, and C. Siemers. “On Solving Task
Allocation and Schedule Generation for Time-Triggered LET Systems using
Constraint Programming”. In: ARCS Workshop 2019; IEEE 32nd International
Conference on Architecture of Computing Systems. 2019, pp. 1-8.

E. Lalo, A. Sailer,]J. Mottok, and C. Siemers. “Overhead-Aware Schedule Syn-
thesis for Logical Execution Time (LET) in Automotive Systems”. In: IEEE 35th
International System-on-Chip Conference (SOCC). 2022, pp. 1-6.

Vector Informatik GmbH. TA Simulation Module. 2020-09. URL: http://www.
vector.com.

ISO. Road vehicles — functional safety. ISO 26262. Standard. International Organi-
sation for Standardisation, 2011.

ARINC Specification 653-1. Avionics application standard interface. Aeronautical
Radio Inc Software. 2003-10.

AUTOSAR. Specification of Operating System. Release R21-11. Available at http:
//www.autosar.org. 2021-11.

D. Reinhardt and G. Morgan. “An embedded hypervisor for safety-relevant au-
tomotive E/E-systems”. In: Proceedings of the 9th IEEE International Symposium
on Industrial Embedded Systems (SIES 2014). 2014, pp. 189-198.

G. Han, H. Zeng, M. Di Natale, X. Liu, and W. Dou. “Experimental Evaluation
and Selection of Data Consistency Mechanisms for Hard Real-Time Applica-
tions on Multicore Platforms”. In: IEEE Transactions on Industrial Informatics
10.2 (2014), pp. 903-918.

M. Raynal. “Solving Mutual Exclusion”. In: Concurrent Programming: Algorithms,
Principles, and Foundations. Springer, 2013, pp. 15-60.

J. B. Goodenough and L. Sha. “The priority ceiling protocol: A method for
minimizing the blocking of high priority Ada tasks”. In: ACM SIGAda Ada
Letters 8.7 (1988), pp. 20-31.

https://doi.org/10.20378/irbo-52917
https://fis.uni-bamberg.de/handle/uniba/44463
https://fis.uni-bamberg.de/handle/uniba/44463
http://www.vector.com
http://www.vector.com
http://www.autosar.org
http://www.autosar.org

References | 341

[24] H. Kopetz and]. Reisinger. “The Non-Blocking Write Protocol NBW: A solution
to a Real-Time Synchronization Problem”. In: Real-Time Systems Symposium.
IEEE, 1993, pp. 131-137.

[25] M. Herlihy. “A Methodology for Implementing Highly Concurrent Data Struc-
tures”. In: ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPOPP). ACM, 1990, pp. 197-206.

[26] D. Paret. Multiplexed Networks for Embedded Systems: CAN, LIN, FlexRay, Safe-by-
Wire. John Wiley & Sons, 2007.

[27] R.I. Davis, A. Zabos, and A. Burns. “Efficient Exact Schedulability Tests for
Fixed Priority Real-Time Systems”. In: IEEE Transactions on Computers 57.9
(2008), pp- 1261-1276.

[28] A. Bastoni, B. B. Brandenburg, and J. H. Anderson. “Is Semi-Partitioned
Scheduling Practical?” In: 23rd Euromicro Conference on Real-Time Systems. 2011,
pp- 125-135.

[29] B. Andersson and J. Jonsson. “Fixed-priority preemptive multiprocessor schedul-
ing: to partition or not to partition”. In: Proceedings Seventh International Confer-
ence on Real-Time Computing Systems and Applications. 2000, pp. 337-346.

[30] M. Lowinski, D. Ziegenbein, and S. Glesner. “Splitting tasks for migrating real-
time automotive applications to multi-core ECUs”. In: 11th IEEE Symposium on
Industrial Embedded Systems (SIES). 2016, pp. 1-8.

[31] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. “Proportionate
progress: A notion of fairness in resource allocation”. In: Algorithmica 15.6
(1996), pp. 600-625.

[32] H. Alhussian, N. Zakaria, and A. Patel. “An unfair semi-greedy real-time
multiprocessor scheduling algorithm”. In: Computers and Electrical Engineering
50 (2014), pp. 143-165.

[33] M. Bertogna and S. Baruah. “Tests for Global EDF Schedulability Analysis”. In:
J. Syst. Archit. 57.5 (2011), pp. 487-497.

[34] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo. “Optimal
Selection of Preemption Points to Minimize Preemption Overhead”. In: 23rd
Euromicro Conference on Real-Time Systems. 2011, pp. 217-227.

[35] J. M. Marinho, V. Nélis, S. M. Petters, and I. Puaut. “Preemption delay analysis
for floating non-preemptive region scheduling”. In: Design, Automation Test in
Europe Conference Exhibition (DATE). 2012, pp. 497-502.

[36] G. Yao, G. Buttazzo, and M. Bertogna. “Comparative evaluation of limited
preemptive methods”. In: IEEE 15th Conference on Emerging Technologies Factory
Automation (ETFA 2010). 2010, pp. 1-8.

[37] G.C. Buttazzo, M. Bertogna, and G. Yao. “Limited Preemptive Scheduling for
Real-Time Systems. A Survey”. In: IEEE Transactions on Industrial Informatics
9.1 (2013), pp- 3-15.

342 |

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

References

H. Kopetz. “Event-Triggered Versus Time-Triggered Real-Time Systems”. In:
Operating Systems of the 90s and Beyond. Vol. 563. Lecture Notes in Computer
Science. Springer, 1991, pp. 87-101.

E. Scheler and W. Schroeder-Preikschat. “Time-Triggered vs. Event-Triggered:
A matter of configuration?” In: ITG FA 6.2 Workshop on Model-Based Testing,
GI/ITG Workshop on Non-Functional Properties of Embedded Systems, 13th GI/ITG
Conference Measuring, Modelling, and Evaluation of Computer and Communications.
2006, pp. 1-6.

S. Schorr and G. Fohler. “Integrated time- and event-triggered scheduling -
An overhead analysis on the ARM architecture”. In: IEEE 19th International
Conference on Embedded and Real-Time Computing Systems and Applications. 2013,
pp- 165-174.

H. Kopetz. Real-Time Systems: Design Principles for Distributed Embedded Applica-
tions. 2nd. Springer Publishing Company, Incorporated, 2011.

E. Massa, G. Lima, and P. Regnier. “Revealing the Secrets of RUN and QPS:
New Trends for Optimal Real-Time Multiprocessor Scheduling”. In: Brazilian
Symposium on Computing Systems Engineering. 2014, pp. 150-155.

P. Regnier, G. Lima, E. Massa, G. Levin, and S. Brandt. “RUN: Optimal Multi-
processor Real-Time Scheduling via Reduction to Uniprocessor”. In: Proceedings
of the 2011 IEEE 32nd Real-Time Systems Symposium. IEEE Computer Society,
2011, pp. 104-115.

AUTOSAR. Software Component Template. Release R21-11. Available at http:
//www.autosar.org. 2021-11.

AUTOSAR. Methodology for Classic Platform. Release R21-11. Available at http:
//www.autosar.org. 2021-11.

AUTOSAR. Specification of RTE Software. Release R21-11. Available at http:
//www.autosar.org. 2021-11.

AUTOSAR. Basic Software Module Description Template. Release R21-11. Available
athttp://www.autosar.org. 2021-11.

A. Lofwenmark and S. Nadjm-Tehrani. “Challenges in future avionic systems
on multi-core platforms”. In: Proceedings - IEEE 25th International Symposium on
Software Reliability Engineering Workshops, ISSREW 2014 (2014), pp. 115-119.

R. Rajkumar. “Real-time synchronization protocols for shared memory multi-
processors”. In: Proceedings.,10th International Conference on Distributed Comput-
ing Systems. 1990, pp. 116-123.

M. Alfranseder, M. Deubzer, B. Justus, J. Mottok, and C. Siemers. “An efficient
spin-lock based multi-core resource sharing protocol”. In: IEEE 33rd Interna-
tional Performance Computing and Communications Conference (IPCCC). 2014,

pp- 1-7.

http://www.autosar.org
http://www.autosar.org
http://www.autosar.org
http://www.autosar.org
http://www.autosar.org
http://www.autosar.org
http://www.autosar.org

References | 343

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[59]

[60]

[61]

[62]

L. Michel, T. Flaemig, D. Claraz, and R. Mader. “Shared SW development in
multi-core automotive context”. In: 8th European Congress on Embedded Real
Time Software and Systems (ERTS 2016). Toulouse, France, 2016.

R. Rivett. “The Challenge of Technological Change in the Automotive Industry”.
In: Achieving Systems Safety. Ed. by C. Dale and T. Anderson. Springer London,
2012, pp. 3542.

J. Martinez, I. Safiudo, and M. Bertogna. “Analytical Characterization of End-
to-End Communication Delays With Logical Execution Time”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 37.11 (2018),
pp- 2244-2254.

T. A. Henzinger, C. M. Kirsch, M. A. Sanvido, and W. Pree. “From control
models to real- time code using Giotto.” In: IEEE Control Systems Magazine
23(1). Springer, 2003, pp. 50-64.

A. Ghosal, T. A. Henzinger, C. M. Kirsch, and M. A. Sanvido. “Event-driven
programming with logical execution times”. In: Inn Proc. International Workshop
on Hybrid Systems: Computation and Control (HSCC) 2993 (2004), pp. 357-371.

E. Farcas, C. Farcas, W. Pree, and]J. Templ. “Transparent Distribution of Real-
time Components Based on Logical Execution Time”. In: ACM SIGPLAN/SIGBED
Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES) 40
(2005), pp. 31-39.

P. Derler and S. Resmerita. “Flexible Static Scheduling of Software with Logical
Execution Time Constraints”. In: Proceedings of the 2010 10th IEEE International
Conference on Computer and Information Technology. CIT "10. Washington, DC,
USA: IEEE Computer Society, 2010, pp. 1719-1726.

A. Biondi, P. Pazzaglia, A. Balsini, and M. D. Natale. “Logical Execution Time
Implementation and Memory Optimization Issues in AUTOSAR Applications
for Multicores”. In: International Workshop on Analysis Tools and Methodologies
for Embedded and Real-time Systems (WATERS). Available at https: //www .
ecrts.org/forum/viewtopic.php?£f=32&t=87, last accessed August
2018.2017.

AUTOSAR. Specification of Timing Extensions. Release R21-11. Available at http:
//www.autosar.org. 2021-11.

N. Halbwachs. “Synchronous programming of reactive systems”. In: Interna-
tional Conference on Computer Aided Verification. Springer. 1998, pp. 1-16.

A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guernic, and R. de
Simone. “The Synchronous Languages 12 Years Later”. In: IEEE 91.1 (2003),
pp. 64-83.

P. Jungklass and M. Berekovic. “Effects of Concurrent Access to Embedded
Multicore Microcontrollers with Hard Real-Time Demands”. In: 2018 IEEE
13th International Symposium on Industrial Embedded Systems (SIES). IEEE. 2018,

pp- 1-9.

https://www.ecrts.org/forum/viewtopic.php?f=32&t=87
https://www.ecrts.org/forum/viewtopic.php?f=32&t=87
http://www.autosar.org
http://www.autosar.org

344 |

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

References

A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst. “Communication
Centric Design in Complex Automotive Embedded Systems”. In: 29th Euromi-
cro Conference on Real-Time Systems (ECRTS 2017). Ed. by M. Bertogna. Vol. 76.
Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany:
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017, 10:1-10:20. DOI:
10.4230/LIPIcs.ECRTS.2017.10. URL: http://drops.dagstuhl.
de/opus/volltexte/2017/7162.

E. Ntaryamira, C. Maxim, and L. Cucu-Grosjean. “Data Consistency and Tem-
poral Validity under the Circular Buffer Communication Paradigm”. In: Pro-
ceedings of the Conference on Research in Adaptive and Convergent Systems. RACS
"19. Association for Computing Machinery, 2019, pp. 51-56.

E. Ntaryamira, C. Maxim, T. Niyonsaba, and L. Cucu-Grosjean. “An efficient
FIFO buffer management to ensure task level and effect-chain level data proper-
ties”. In: IEEE International Conference on Embedded Software and Systems (ICESS).
2020, pp. 1-8.

G. Wang, M. D. Natale, and A. Sangiovanni-Vincentelli. An OSEK/VDX Im-
plementation of Synchronous Reactive Semantics Preserving Communication Pro-
tocols. Tech. rep. UCB/EECS-2007-81. EECS Department, University of Cali-
fornia, Berkeley, 2007. URL: http://www2 .eecs .berkeley.edu/Pubs/
TechRpts/2007/EECS-2007-81.html.

G. Wang, M. D. Natale, and A. Sangiovanni-Vincentelli. “Optimal Synthesis of
Communication Procedures in Real-Time Synchronous Reactive Models”. In:
IEEE Transactions on Industrial Informatics 6.4 (2010), pp. 729-743.

M. D. Natale, G. Wang, and A. S. Vincentelli. “Optimizing the Implementation
of Communication in Synchronous Reactive Models”. In: IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). IEEE, 2008, pp. 169-
179.

G. Wang, M. Di Natale, and A. Sangiovanni-Vincentelli. “Improving the Size
of Communication Buffers in Synchronous Models With Time Constraints”. In:
IEEE Transactions on Industrial Informatics 5.3 (2009), pp. 229-240.

H. Zeng and M. Di Natale. “Mechanisms for guaranteeing data consistency and
flow preservation in AUTOSAR software on multi-core platforms”. In: 6th IEEE
International Symposium on Industrial and Embedded Systems. 2011, pp. 140-149.

H. Zeng and M. D. Natale. “Efficient Implementation of AUTOSAR Com-
ponents with Minimal Memory Usage”. In: IEEE International Symposium on
Industrial Embedded Systems (SIES). IEEE, 2012, pp. 130-137.

AUTOSAR. Release R21-11. Available at http://www.autosar.org. 2021-
11.

J. Hennig, H. von Hasseln, H. Mohammad, S. Resmerita, S. Lukesch, and
A. Naderlinger. “Towards Parallelizing Legacy Embedded Control Software
Using the LET Programming Paradigm”. In: IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS). IEEE, 2016.

https://doi.org/10.4230/LIPIcs.ECRTS.2017.10
http://drops.dagstuhl.de/opus/volltexte/2017/7162
http://drops.dagstuhl.de/opus/volltexte/2017/7162
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-81.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2007/EECS-2007-81.html
http://www.autosar.org

References | 345

[74]

[75]

[76]

[77]

[78]

[79]

[83]

[84]

[85]

C. Bradatsch, F. Kluge, and T. Ungerer. “Data Age Diminution in the Logical
Execution Time Model”. In: International Conference on Architecture of Computing
Systems (ARCS). Vol. 9637. Lecture Notes in Computer Science. Springer, 2016,
pp- 173-184.

M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte. “End-to-end timing
analysis of cause-effect chains in automotive embedded systems”. In: Journal of
Systems Architecture 80 (2017), pp. 104-113.

A. Hamann, D. Dasari, S. Kramer, M. Pressler, F. Wurst, and D. Ziegenbein.
“WATERS Industrial Challenge 2017”. In: International Workshop on Analysis
Tools and Methodologies for Embedded and Real-time Systems (WATERS). Available
at https://waters2017.inria. fr/challenge, last accessed August
2018. Inria, 2017.

C. Brandberg and M. Di Natale. “A SimEvents Model for the Analysis of
Scheduling and Memory Access Delays in Multicores”. In: [EEE 13th Interna-
tional Symposium on Industrial Embedded Systems (SIES). 2018, pp. 1-10.

R. Ernst, L. Ahrendts, K.-B. Gemlau, S. Quinton, H. Von Hasseln, and J. Hennig.
System Level LET with Application to Automotive Design. Research Report. TU
Braunschweig, 2018, pp. 1-11.

F. Kluge, M. Schoeberl, and T. Ungerer. “Support for the Logical Execution
Time Model on a Time-predictable Multicore Processor”. In: SIGBED Review—
Special Issue on International Workshop on RealTime Networks (RTN) 13.4 (2016),
pp- 61-66.

M. Beckert, M. Mostl, and R. Ernst. “Zero-time communication for automotive
multi-core systems under SPP scheduling”. In: IEEE 21st International Conference
on Emerging Technologies and Factory Automation (ETFA). 2016, pp. 1-9.

M. Beckert. “Scheduling Mechanisms for Efficient and Safe Automotive Sys-
tems Integration”. PhD thesis. 2020-01.

M. Ogawa, S. Honda, and H. Takada. “Efficient Approach to Ensure Temporal
Determinism in Automotive Control Systems”. In: 8th International Symposium
on Embedded Computing and System Design (ISED). 2018, pp. 53-57.

A. Biondi and M. Di Natale. “Achieving Predictable Multicore Execution of
Automotive Applications Using the LET Paradigm”. In: IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS). 2018, pp. 240-250.

P. Haefele, U. Hartmann, D. Ziegenbein, and S. Kramer. “Method and device
for operating a control device”. Patent US11115232B2 (United States). 2021-09.

Vector Informatik GmbH. Timing Architects Tool Suite. http://www.vector.
com. 2018-04.

AUTOSAR. Specification of Software Cluster Connection module. Release R21-11.
Available at http://www.autosar.org. 2021-11.

https://waters2017.inria.fr/challenge
http://www.vector.com
http://www.vector.com
http://www.autosar.org

346 |

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

References

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whalley, G.
Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut, P. Puschner,
J. Staschulat, and P. Stenstrom. “The Worst-Case Execution-time Problem—
Overview of Methods and Survey of Tools”. In: ACM Transactions on Embedded
Computing Systems 7.3 (2008), 36:1-36:53.

E. Wozniak, M. Di Natale, H. Zeng, C. Mraidha, S. Tucci-Piergiovanni, and
S. Gerard. “Assigning Time Budgets to Component Functions in the Design
of Time-Critical Automotive Systems”. In: Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering. New York, NY, USA:
Association for Computing Machinery, 2014, pp. 235-246.

A. A.Paul and B. A. S. Pillai. “Reducing the Number of Context Switches in
Real Time Systems”. In: International Conference on Process Automation, Control
and Computing. 2011, pp. 1-6.

OSEK/VDX. Operating Sytem. Specification 2.3.3. Available at http: //www.
osek-vdx.org, last accessed on November 2017. 2005-02.

S. M. Enosh and N. S. George. “An efficient implementation of protocol opera-
tion control unit of FlexRay communication controller”. In: First International
Conference on Computational Systems and Communications (ICCSC). 2014, pp. 256~
259.

IEEE 802.1 Working Group. Time-sensitive networking task group. Last accessed
September 2021. URL: http://www.ieee802.0rg/1l/pages/tsn.html.

C. Barrett and C. Tinelli. “Satisfiability Modulo Theories”. In: Handbook of Model
Checking. Ed. by E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem. Cham:
Springer International Publishing, 2018, pp. 305-343.

S. Samii, A. Cervin, P. Eles, and Z. Peng. “Integrated Scheduling and Synthe-
sis of Control Applications on Distributed Embedded Systems”. In: Design,
Automation & Test in Europe Conf. & Exhib. 2009, pp. 57-62.

R. Schneider, D. Goswami, S. Zafar, M. Lukasiewycz, and S. Chakraborty.
“Constraint-Driven Synthesis and Tool-Support for FlexRay-Based Automotive
Control Systems”. In: Proceedings of the Seventh IEEE/ACMY/IFIP International
Conference on Hardware/Software Codesign and System Synthesis. Association for
Computing Machinery, 2011, pp. 139-148.

D. Goswami, M. Lukasiewycz, R. Schneider, and S. Chakraborty. “Time-triggered
implementations of mixed-criticality automotive software”. In: Design, Automa-
tion & Test in Europe Conference Exhibition (DATE). 2012, pp. 1227-1232.

D. Roy, L. Zhang, W. Chang, D. Goswami, and S. Chakraborty. “Multi-Objective
Co-Optimization of FlexRay-Based Distributed Control Systems”. In: IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS). 2016, pp. 1-
12.

http://www.osek-vdx.org
http://www.osek-vdx.org
http://www.ieee802.org/1/pages/tsn.html

References | 347

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

E. Eisenbrand, K. Kesavan, R. S. Mattikalli, M. Niemeier, A. W. Nordsieck, M.
Skutella, J. Verschae, and A. Wiese. “Solving an Avionics Real-Time Scheduling
Problem by Advanced IP-Methods”. In: Proceedings of the 18th Annual European
Conference on Algorithms: Part 1. ESA’10. 2010, pp. 11-22.

M. Blikstad, E. Karlsson, T. Lo6w, and E. Ronnberg. “An optimisation approach
for pre-runtime scheduling of tasks and communication in an integrated mod-
ular avionic system”. In: Optimization and Engineering 19 (2018), pp. 1-28.

S. Voss and B. Schétz. “Deployment and Scheduling Synthesis for Mixed-
Critical Shared-Memory Applications”. In: 20th IEEE International Conference
and Workshops on Engineering of Computer Based Systems (ECBS). 2013, pp. 100-
109.

S. Zverlov and S. Voss. “Synthesis of Pareto Efficient Technical Architectures
for Multi-core Systems”. In: IEEE 38th International Computer Software and Appli-
cations Conference Workshops. 2014, pp. 366-371.

S. Zverlov, M. Khalil, and M. Chaudhary. “Pareto-efficient deployment syn-
thesis for safety-critical applications in seamless model-based development”.
In: 8th European Congress on Embedded Real Time Software and Systems (ERTS).
Toulouse, France, 2016.

G. Igna, L. Dieudonne, S. Voss, and B. Schatz. “Model-based deployment
generation for safety-critical avionics systems”. In: 12th IEEE International
Symposium on Industrial Embedded Systems (SIES). 2017, pp. 1-8.

F. Sagstetter, S. Andalam, P. Waszecki, M. Lukasiewycz, H. Stihle, S. Chakraborty,
and A. C. Knoll. “Schedule Integration Framework for Time-Triggered Auto-
motive Architectures”. In: The 51st Annual Design Automation Conference 2014,
DAC '14. ACM, 2014, 20:1-20:6.

E. Sagstetter. “Schedule Synthesis for Time-Triggered Automotive Architec-
tures”. PhD thesis. Technical University Munich, Germany, 2016.

A. Darbandi, S. Yoon, and M. K. Kim. “Schedule construction under prece-
dence constraints in FlexRay in-vehicle networks”. In: International Journal of
Automotive Technology 18.4 (2017), pp. 671-683.

A. Minaeva, B. Akesson, Z. Hanzélek, and D. Dasari. “Time-Triggered Co-
Scheduling of Computation and Communication with Jitter Requirements”. In:
IEEE Transactions on Computers 67.1 (2018), pp. 115-129.

W. Wang, F. Camut, and B. Miramond. “Generation of schedule tables on
multi-core systems for AUTOSAR applications”. In: Conference on Design and
Architectures for Signal and Image Processing (DASIP). 2016, pp. 191-198.

M. Hu, J. Luo, Y. Wang, M. Lukasiewycz, and Z. Zeng. “Holistic Scheduling
of Real-Time Applications in Time-Triggered In-Vehicle Networks”. In: IEEE
Transactions on Industrial Informatics 10.3 (2014), pp. 1817-1828.

348 |

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

References

M. Hu, J. Luo, Y. Wang, and B. Veeravalli. “Scheduling periodic task graphs
for safety-critical time-triggered avionic systems”. In: IEEE Transactions on
Aerospace and Electronic Systems 51.3 (2015), pp. 2294-2304.

W. Zheng, J. Chong, C. Pinello, S. Kanajan, and A. Sangiovanni-Vincentelli.
“Extensible and scalable time triggered scheduling”. In: Fifth International Con-
ference on Application of Concurrency to System Design (ACSD’05). 2005, pp. 132—
141.

H. Zeng, W. Zheng, M. Di Natale, A. Ghosal, P. Giusto, and A. Sangiovanni-
Vincentelli. “Scheduling the FlexRay bus using optimization techniques”. In:
2009 46th ACM/IEEE Design Automation Conference. 2009, pp. 874-877.

H. Zeng, M. Di Natale, A. Ghosal, and A. Sangiovanni-Vincentelli. “Schedule
Optimization of Time-Triggered Systems Communicating Over the FlexRay
Static Segment”. In: IEEE Transactions on Industrial Informatics 7.1 (2011), pp. 1-
17.

R. Hilbrich and H.-J. Goltz. “Model-based Generation of Static Schedules for
Safety Critical Multi-core Systems in the Avionics Domain”. In: Proceedings
of the 4th International Workshop on Multicore Software Engineering. INMSE "11.
ACM, 2011, pp. 9-16.

R. Hilbrich. “Platzierung von Softwarekomponenten auf Mehrkernprozessoren:
automatisierte Konstruktion und Analyse fiir funktionssichere Systeme”. PhD
thesis. Brandenburg University of Technology, Cottbus-Senftenberg, Germany,
2015.

M. Lukasiewycz, R. Schneider, D. Goswami, and S. Chakraborty. “Modular
scheduling of distributed heterogeneous time-triggered automotive systems”.
In: 17th Asia and South Pacific Design Automation Conference. 2012, pp. 665-670.

Y. Zhou, S. Samii, P. Eles, and Z. Peng. “Partitioned and Overhead-aware
Scheduling of Mixed-criticality Real-time Systems”. In: Proceedings of the 24th
Asia and South Pacific Design Automation Conference. ASPDAC "19. New York,
NY, USA: ACM, 2019, pp. 39-44.

P. Han, Z. Zhai, B. Nielsen, and U. Nyman. “Model-Based Optimization of
ARINC-653 Partition Scheduling”. In: Int.]. Softw. Tools Technol. Transf. 23.5
(2021), pp. 721-740.

S.D. McLean, S. S. Craciunas, E. Alexander Juul Hansen, and P. Pop. “Mapping
and Scheduling Automotive Applications on ADAS Platforms using Meta-
heuristics”. In: 25th IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA). Vol. 1. 2020, pp. 329-336.

eCos. Embedded Configurable Operating System. Available at http: //ecos.

sourceware.org. 2012.

Y.-K. Kwok and I. Ahmad. “Dynamic critical-path scheduling: an effective
technique for allocating task graphs to multiprocessors”. In: IEEE Transactions
on Parallel and Distributed Systems 7.5 (1996), pp. 506-521.

http://ecos.sourceware.org
http://ecos.sourceware.org

References | 349

[122] H. Topcuoglu, S. Hariri, and M.-Y. Wu. “Performance-effective and low-complexity
task scheduling for heterogeneous computing”. In: IEEE Transactions on Parallel
and Distributed Systems 13.3 (2002), pp. 260-274.

[123] J. Theis, G. Fohler, and S. Baruah. “Schedule table generation for time-triggered
mixed criticality systems”. In: Proc. WMC, RTSS (2013), pp. 79-84.

[124] A.Burnsand R.I. Davis. “A Survey of Research into Mixed Criticality Systems”.
In: ACM Comput. Surv. 50.6 (2017), 82:1-82:37.

[125] S. Vestal. “Preemptive Scheduling of Multi-criticality Systems with Varying
Degrees of Execution Time Assurance”. In: 28th IEEE International Real-Time
Systems Symposium (RTSS 2007). 2007, pp. 239-243.

[126] W. Steiner. “An Evaluation of SMT-Based Schedule Synthesis for Time-Triggered
Multi-hop Networks”. In: 31st IEEE Real-Time Systems Symposium. 2010, pp. 375—
384.

[127] W. Steiner. “Synthesis of Static Communication Schedules for Mixed-Criticality
Systems”. In: 14th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops. 2011, pp. 11-18.

[128] J. Lehoczky. “Fixed priority scheduling of periodic task sets with arbitrary
deadlines”. In: Proceedings 11th Real-Time Systems Symposium. 1990, pp. 201-209.

[129] P. Pazzaglia, A. Biondi, and M. Di Natale. “Simple and General Methods for
Fixed-Priority Schedulability in Optimization Problems”. In: Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). 2019, pp. 1543-1548.

[130] Y. Wang and M. Saksena. “Scheduling Fixed-Priority Tasks with Preemption
Threshold”. In: International Conference on Real-Time Computing Systems and
Applications (RTCSA). IEEE, 1999, pp. 328-335.

[131] M. Bertogna, G. Buttazzo, and G. Yao. “Improving Feasibility of Fixed Prior-
ity Tasks Using Non-Preemptive Regions”. In: IEEE 32nd Real-Time Systems
Symposium. 2011, pp. 251-260.

[132] R.I. Davis, L. Cucu-Grosjean, M. Bertogna, and A. Burns. “A review of priority
assignment in real-time systems”. In: Journal of Systems Architecture - Embedded
Systems Design 65 (2016), pp. 64-82.

[133] N. C. Audsley. “On priority assignment in fixed priority scheduling”. In:
Information Processing Letters 79.1 (2001), pp. 39—44.

[134] R.I. Davis and A. Burns. “Robust Priority Assignment for Fixed Priority Real-
Time Systems”. In: 28th IEEE International Real-Time Systems Symposium (RTSS
2007). 2007, pp. 3-14.

[135] M. Grenier, J. Goossens, and N. Navet. “Near-Optimal Fixed Priority Preemp-
tive Scheduling of Offset Free Systems”. In: 14th International Conference on
Real-Time and Networks Systems (RTNS’06). 2006, pp. 35—-42.

[136] J. Goossens and R. Devillers. “The Non-Optimality of the Monotonic Priority
Assignments for Hard Real-Time Offset Free Systems”. In: Real-Time Systems.
13.1997, pp. 107-126.

350 |

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

References

R. Garibay-Martinez, G. Nelissen, L. L. Ferreira, and L. M. Pinho. “Task par-
titioning and priority assignment for distributed hard real-time systems”. In:
Journal of Computer and System Sciences 81.8 (2015), pp. 1542-1555.

W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu. “PASS: Priority assignment
of real-time tasks with dynamic suspending behavior under fixed-priority
scheduling”. In: 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).
2015, pp. 1-6.

J.J. G. Garcia and M. G. Harbour. “Optimized priority assignment for tasks
and messages in distributed hard real-time systems”. In: Proceedings of Third
Workshop on Parallel and Distributed Real-Time Systems. 1995, pp. 124-132.

Q. Zhu, Y. Yang, E. Scholte, M. D. Natale, and A. Sangiovanni-Vincentelli. “Op-
timizing Extensibility in Hard Real-Time Distributed Systems”. In: 15th IEEE
Real-Time and Embedded Technology and Applications Symposium. 2009, pp. 275-
284.

Q. Zhu, Y. Yang, M. Natale, E. Scholte, and A. Sangiovanni-Vincentelli. “Op-
timizing the Software Architecture for Extensibility in Hard Real-Time Dis-
tributed Systems”. In: IEEE Transactions on Industrial Informatics 6.4 (2010),
pp- 621-636.

E. Azketa, J. P. Uribe, M. Marcos, L. Almeida, and J. J. Gutierrez. “Permuta-
tional Genetic Algorithm for the Optimized Assignment of Priorities to Tasks
and Messages in Distributed Real-Time Systems”. In: IEEE 10th International
Conference on Trust, Security and Privacy in Computing and Communications. 2011,
pp- 958-965.

A. Hamann, M. Jersak, K. Richter, and R. Ernst. “Design space exploration and
system optimization with SymTA /S - symbolic timing analysis for systems”.
In: 25th IEEE International Real-Time Systems Symposium. 2004, pp. 469—478.

M. N. S. M. Sayuti and L. S. Indrusiak. “Simultaneous Optimisation of Task
Mapping and Priority Assignment for Real-Time Embedded NoCs”. In: 23rd
Euromicro International Conference on Parallel, Distributed, and Network-Based
Processing. 2015, pp. 692-695.

R. Bouaziz, L. Lemarchand, F. Singhoff, B. Zalila, and M. Jmaiel. “Architecture
Exploration of Real-Time Systems Based on Multi-objective Optimization”.

In: 20th International Conference on Engineering of Complex Computer Systems
(ICECCS). 2015, pp. 1-10.

I. Bate and P. Emberson. “Incorporating Scenarios And Heuristics To Improve
Flexibility In Real-Time Embedded Systems”. In: 12th IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS’06). 2006, pp. 221-230.

R. Racu, M. Jersak, and R. Ernst. “Applying sensitivity analysis in real-time
distributed systems”. In: 11th IEEE Real Time and Embedded Technology and
Applications Symposium. 2005, pp. 160-169.

References | 351

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

A. Mehiaoui, E. Wozniak, S. Tucci-Piergiovanni, C. Mraidha, M. Di Natale,
H. Zeng,].-P. Babau, L. Lemarchand, and S. Gerard. “A Two-Step Optimization
Technique for Functions Placement, Partitioning, and Priority Assignment
in Distributed Systems”. In: Proceedings of the 14th ACM SIGPLAN/SIGBED
Conference on Languages, Compilers and Tools for Embedded Systems. Association
for Computing Machinery, 2013, pp. 121-132.

E. Wozniak, A. Mehiaoui, C. Mraidha, S. Tucci-Piergiovanni, and S. Gerard.
“An Optimization Approach for the Synthesis of AUTOSAR Architectures”.
In: Conference on Emerging Technologies Factory Automation (ETFA). IEEE, 2013,
pp. 1-10.

A. Metzner and C. Herde. “RTSAT- An Optimal and Efficient Approach to the
Task Allocation Problem in Distributed Architectures”. In: 27th IEEE Interna-
tional Real-Time Systems Symposium (RTSS’06). 2006, pp. 147-158.

W. Zheng, Q. Zhu, M. D. Natale, and A. S. Vincentelli. “Definition of Task
Allocation and Priority Assignment in Hard Real-Time Distributed Systems”.
In: 28th IEEE International Real-Time Systems Symposium (RTSS 2007). 2007,
pp- 161-170.

Q. Zhu, H. Zeng, W. Zheng, M. D. Natale, and A. Sangiovanni-Vincentelli.
“Optimization of Task Allocation and Priority Assignment in Hard Real-time
Distributed Systems”. In: ACM Trans. Embed. Comput. Syst. 11.4 (2013), 85:1-
85:30.

J. Schlatow, M. Mostl, S. Tobuschat, T. Ishigooka, and R. Ernst. “Data-Age
Analysis and Optimisation for Cause-Effect Chains in Automotive Control
Systems”. In: IEEE 13th International Symposium on Industrial Embedded Systems
(SIES). 2018, pp. 1-9.

A. Wieder and B. B. Brandenburg. “Efficient partitioning of sporadic real-
time tasks with shared resources and spin locks”. In: 8th IEEE International
Symposium on Industrial Embedded Systems (SIES). 2013, pp. 49-58.

H. Zeng and M. Di Natale. “An Efficient Formulation of the Real-Time Feasibil-
ity Region for Design Optimization”. In: IEEE Transactions on Computers 62.4
(2013), pp. 644-661.

Y. Zhao and H. Zeng. “The concept of unschedulability core for optimizing
priority assignment in real-time systems”. In: Design, Automation Test in Europe
Conference Exhibition (DATE), 2017. 2017, pp. 232-237.

S. Igarashi, T. Ishigooka, T. Horiguchi, R. Koike, and T. Azumi. “Heuristic
Contention-Free Scheduling Algorithm for Multi-core Processor using LET
Model”. In: IEEE/ACM 24th International Symposium on Distributed Simulation
and Real Time Applications (DS-RT). 2020, pp. 1-10.

A. Yano, S. Igarashi, and T. Azumi. “Contention-Free Scheduling Algorithm
Using LET Paradigm for Clustered Many-core Processor”. In: IEEE/ACM 25th
International Symposium on Distributed Simulation and Real Time Applications
(DS-RT). 2021, pp. 1-4.

352 |

[159]

[160]

[161]

[162]
[163]
[164]

[165]

[166]
[167]

[168]

References

H. Zeng, M. D. Natale, and Q. Zhu. “Minimizing Stack and Communication
Memory Usage in Real-Time Embedded Applications”. In: ACM Transactions
on Embedded Computing Systems 13.5s (2014), 149:1-149:25.

S. Anssi, S. Tucci-Piergiovanni, S. Kuntz, S. Gérard, and F. Terrier. “Enabling
Scheduling Analysis for AUTOSAR Systems”. In: 14th IEEE International Sym-
posium on Object/Component/Service-Oriented Real-Time Distributed Computing.
2011, pp. 152-159.

"Timing Architects Embedded Systems GmbH." BTF Specification (Version 2.1.3).

2014-04. URL: https://wiki.eclipse.org/images/e/e6/TA_BTF_
Specification_2.1.3_FEclipse_Auto_IWG.pdf.

L. Perron and V. Furnon. OR-Tools. Version 7.4. Google, 2019-10. URL: https:
//developers.google.com/optimization/.

Vector Informatik GmbH. TA Inspection Module. 2022-09. URL: http://www.

vector.com.

K. A. Valiev. “Quantum computers and quantum computations”. In: Physics-
Uspekhi 48.1 (2005), pp. 1-36.

Q. Cappart, T. Moisan, L.-M. Rousseau, I. Prémont-Schwarz, and A. A. Cire.
“Combining Reinforcement Learning and Constraint Programming for Com-
binatorial Optimization”. In: Proceedings of the AAAI Conference on Artificial
Intelligence 35.5 (2021), pp. 3677-3687.

Infineon. AURIX™ TC39x - B: User’s Manual. 2.0. Infineon Technologies AG.
Germany, 2021.

iSYSTEM. IC5700 Debugger & On-Chip Analyzer User Manual. iISYSTEM AG.
Germany, 2022.

K.-B. Gemlau, L. Kohler, and R. Ernst. “A Platform Programming Paradigm
for Heterogeneous Systems Integration”. In: Proceedings of the IEEE 109.4 (2021),
pp- 582-603.

https://wiki.eclipse.org/images/e/e6/TA_BTF_Specification_2.1.3_Eclipse_Auto_IWG.pdf
https://wiki.eclipse.org/images/e/e6/TA_BTF_Specification_2.1.3_Eclipse_Auto_IWG.pdf
https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://www.vector.com
http://www.vector.com

Glossary and Abbreviations

Acronyms

ABS Antilock Braking System
API Application Programming Interface

AUTOSAR .. AUTomotive Open System ARchitecture

BCET Best-Case Execution Time

BET Bounded-Execution Time

BSW Basic Software

BTF Best Trace Format

CLp Constraint Logic Programming
CP........ Constraint Programming

CPU Control Processing Unit

CRPD Cache-Related Preemption Delay
CSP Constraint Satisfaction Problem
DBP Dynamic Buffering Protocol
DM Deadline Monotonic

ECU Electronic Control Unit

EDF Earliest Deadline First

EMS Engine Management System
EPS Electric Power Steering

ET Event-Triggered

FIFO First In - First Out

FPS Fixed-Priority Scheduling

HOPA Heuristic Optimized Priority Assignment

| 353

354 | Glossary and Abbreviations

HP Hyper-Period

ILe Integer Linear Programming

P Integer Programming

ISR Interrupt Service Routine

LCM Least Common Multiple

LDBP LET Dynamic Buffering Protocol

LET Logical Execution Time

LIFO Last In - First Out

MCAL Microcontroller Abstraction Layer

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming

NBW Non-Blocking Write

OPA Optimal Priority Assigment

os Operating System

OSEK Offene Systeme und deren Schnittstellen fiir die Elektronik in Kraft-
fahrzeugen

PCP Priority Ceiling Protocol

PTP Point-to-Point Protocol

RM Rate Monotonic

RTE Runtime Environment

SBP Static Buffering Protocol

SMT Satisfiability Modulo Theories

SR Synchronous-Reactive

SWC Software Component

TCCP Temporal Concurrency Control Protocol

TICP Timed Implicit Communication Protocol

Glossary and Abbreviations

TIMEX Timing Extensions

TSN Time-Sensitive Networking

T Time-Triggered

TTS Time-Triggered Scheduling

VFB Virtual Functional Bus

WCCT Worst-Case Communication Time
WCET Worst-Case Execution Time
WCRT Worst-Case Response Time

ZET Zero-Execution Time

| 355

List of Figures

List of Figures

2.1

2.2

2.3

24

2.5

2.6

Attributes and scheduling parameters of task T; its job J;;. The first
vertical black arrow indicates the release time r; ; of job J; ; and the red
arrow the absolute deadline d; ;. The release time r; ; is defined based
the offset O; and period P;.

Periodic Timer. Tasks Tp, Ty, and T, are activated by the periodic
timer interrupt Timer. The period of Timer is set to 5ms. The vertical
black arrows indicate the expected activation times of tasks and timer
interrupt. The red arrows indicate the actual activation of tasks. The
horizontal black arrows indicate the shift of activation of tasks. The
solid blue colored boxes indicate the execution of the timer interrupt.

| 357

Activation jitters of tasks are caused by the period and execution of Timer. 17

High-Resolution Timer. Tasks Ty, T, and T, are activated by the high-
resolution software timer handler Timer. The activation of Timer is not
based on a fixed period, but is defined by setting the maximal value
of the timer each time the timer overflows. The vertical black arrows
indicate the expected activation times of tasks and timer interrupt. The
red arrows indicate the actual activation of tasks. The horizontal black
arrows indicate the shift of activation of tasks. The solid blue colored
boxes indicate the execution of the timer interrupt. Activation jitters of
tasks are caused only due to the execution of Timer.

Example of (a) partitioned and (b) semi-partitioned scheduling. The
light green box indicates the preemption time of a task. The gray colored
boxes indicate the start delay. The red arrow indicates a migration of

18

the task to the other core. The black arrows indicate the release of tasks. 19

Example of (a) local, (b) global, and (c) clustered scheduling. The green
colored boxes indicate the executionof tasks.

Example of (a) static and (b) dynamic scheduling. The green colored
boxes indicate the execution of tasks. The gray colored boxes indicate
the start delay. The light green box indicates the preemption time of a

358 |

2.7

2.8

29
2.10

2.11

2.12

2.13

List of Figures

Example of (a) preemptive and (b) non-preemptive scheduling. The
green colored boxes indicate the execution of tasks. The gray colored
boxes indicate the startdelay.

Example of (a) FPS and (b) TTS scheduling. The execution of tasks Tp,
Ty, and Ty, defined by FPS and TTS scheduling approaches, is shown
up to the hyper-period duration (20ms). The black arrows indicate the
release of tasks. The deadlines are equal to the periods for all tasks. The
solid green boxes indicate the execution of tasks. The light green boxes
indicate the preemption time due to execution of higher priority tasks.
The gray colored boxes indicate the startdelay.

Software Component (SWC) elements.
Example of AUTOSAR Communication Paradigms.

Example of (a) data stability and (b) coherency problem. Task Ty and T;
run on different cores. In (a), task Ty modifies the value of data element
S1 while task Tj is executing on the other core. After some time, task
T; reads another value of data element S; compared to the first read.
In (b), data elements S; and S; are not updated coherently by task Ty,
leading to incoherent reads by task Tj. Values F and T indicate Boolean
values Falseand True.

The Logical Execution Time (LET) task model. The periodic task is bound
to a LET interval. In the logical level, tasks read their inputs at the
beginning of their LET and write the outputs at the end of their LET
at zero-execution time. In the physical level, the data exchange at
LET boundaries occurs taking some execution time. The physical data
exchange is depicted by yellow boxes. Tasks execute at any time within
their LET intervals. The green boxes indicate execution time of the task.
The LET interval is depicted by the gray box. The light-green pattern
colored boxes indicate the preemption time of the task. The red arrow
indicates the end time of the LET interval. The design of this figure is
inspired by the classic abstraction of LET given in [55-57].

Example of delivering data without LET paradigm. The data delivery
time depends on task-to-task interferences such as scheduling and
task allocation decision. The green boxes indicate the running time of
tasks. Figure 2.13a shows the execution of Ty and T;. Task T; has the
highest priority and delivers the outputs at time 1 ms. In Figure 2.13b,
task T; has lower priority than T and delivers the outputs at time 2 ms
with a start delay u of 1 ms. In Figure 2.13c, tasks Tp and T; execute on
a processor with lower frequency, in which task T; delivers the outputs
at time 3.5ms with a start delay pof 2ms.

22

25

28

List of Figures

2.14

2.15

3.1

3.2

Example of delivering data with LET paradigm. Task T; produces the
data at any time during its execution, but it is made available at time
4ms, that corresponds to the end time of its LET interval. The green
boxes indicate the running time of tasks and the gray boxes represent
the LET interval. Figure 2.14a shows the execution of T and T;. Task
T has the highest priority and delivers the outputs at time 4 ms, which
corresponds with the end of its LET interval. In Figure 2.14b, task
T; has lower priority than T and delivers the outputs at time 4 ms
independent of start delay y of 1ms. In Figure 2.14c, tasks Tp and
T; execute on a processor with lower frequency. Task T; delivers the
outputs at time 4 ms independent of start delay p of 2ms.

Example of benefits provided by LET. The green boxes indicate the
running time of tasks and the gray boxes represent LET intervals. The
dataflow between LET intervals is shown by the green dashed arrows.

In BET, data is consumed at the boundaries of execution time or at any
time during execution. In LET, data is exchanged at LET boundaries. In
BET task T; consumes data produced by the parallel instance of task Tj.
In LET, task Tj reads the produced data by the previous instance of task
To. The solid green filled boxes indicate the execution of tasks. The gray
boxes indicate the LET intervals. The dotted lined arrows demonstrate
the direction of exchanged data.

Example of buffer accesses with Dynamic Buffering Protocol (DBP) for
one writer task T, and two reader tasks T,y and T,;. The buffer SP
has three elements. A buffer element changes its value each time it is
written by the writer task Ty,. The write operations are depicted by the
red solid arrows and the read operations by the green dashed arrows.
The first instance of the higher-priority task T, reads the initial data.
The green marked blocks indicate execution time of tasks. The gray
boxes indicate the start delay of tasks and the light-green boxes the
preemption time. Task T} is interrupted in every instance wither by T;,
or Tyo. Priorities have the ordering 77,y < 71y < 70. The visualization
of buffers is inspired by figuresin [13].

| 359

40

360 |

3.3

34

3.5

3.6

3.7

3.8

List of Figures

Example of buffer accesses with Temporal Concurrency Control Protocol
(TCCP) for one writer task T, and two reader tasks T,y and T,;. The
buffer SP has three elements. A buffer element changes its value each
time it is written by the writer task T;,. The write operations are de-
picted by the red solid arrows and the read operations by the green
dashed arrows. The first instance of the higher-priority task T, reads
the initial data. The green marked blocks indicate execution time of
tasks. The gray boxes indicate the start delay of tasks and the light-green
boxes the preemption time. Task T, is interrupted in every instance
wither by T, or T}9. Priorities have the ordering 77,1 < 71y < 7ty9. The
visualization of buffers is inspired by figuresin [13].

Composition of tasks into LET Start TZ-S , LET End TF and computation
T;. Communication tasks Tis and TiE take each wcetiS and wcetl’.E time to
execute. The end of let; of T; corresponds to the end of deadline D;. For
tasks with LET interval let; equal to their period P; the write operation
takes place before the release of the nextjob.

Example of buffer accesses using PTP for one writer task T, and two
reader tasks T;p and T,;. The gray boxes represent the LET intervals
of each job. The green and red arrows indicate read and write accesses,
respectively. The white boxes represent the global data element S; and
the values it stores in different time intervals. The light blue boxes rep-
resent the local buffers SZ}, S%, and Sfll of Ty, Tyo, and T, respectively.
The dashed white boxes indicate the LET intervals and buffers of the

first task instances of the next Hyper-Period (HP) interval.

Data consistency issues of copy-in/-out operations of non-atomic data
elements. The data element S; is not atomic and requires multiple
processor cycles per read and write. Task TP executes the copy-in
operation of data element Sy and TF performs the copy-out operation
of data element S;. The green arrow indicates a read access and the red
arrOW @ Write @CCESS. v . v v v i

Formal decomposition of time delays in copy-in and copy-out opera-
tions of tasks TP and TFinPTP.

LET task composition in SBP. The computation task T; has period P; and
the duration of LET interval let;. The LET interval of T; has a duration
let; equal to the deadline D;. The wcetﬁ”d” is the Worst-Case Execution
Time (WCET) for initializing the buffer indexes at the beginning of
execution. The wcet; defines the WCETof T;.

62

List of Figures

3.9

3.10

3.11

Example of buffer accesses using SBP for one writer task T, and two
reader tasks T,9 and T};. The gray boxes represent the LET interval of
each task instance. The green arrow indicates a read access and the red
arrow a write access. The light blue boxes represent the lifetime of the
global buffer S3 used interchangeably by Ty, T;o, and T;1 in different
time-intervals. The buffer content changes every time a new value
is written. The horizontal red and green bold lines show the usage
lifetime of a buffer element. A green horizontal line indicates that a
buffer element is read by a reader job for the time interval indicated
by the length of the line. Similarly, a red horizontal line indicates that
the buffer element is written by a writer job. The dashed white boxes
indicate the LET intervals and buffers of the first task instances of the
next HP. The visualization of buffers is inspired by figures in [13].

Example of reducing the buffer size and end-to-end delays in SBP
through changes of activation offsets and LET interval duration for
one writer task Ty, and two reader tasks T;o and T;;. The gray boxes
represent the LET interval of each task instance. The green arrow
indicates a read access and the red arrow a write access. The light blue
boxes represent the global buffer S% used by T, T, and T} in different

| 361

75

time intervals. The visualization of buffers is inspired by figures in [13]. 79

Example of suppressing unnecessary writes in SBP for one writer task
Ty and two reader tasks T,g and T;1. The gray boxes represent the LET
interval of each task instance. The green arrow indicates a read access
and the red arrow a write access. The light blue boxes represent the
global buffer S used by Ty, Ty, and T, in different time-intervals.
Jobs of writer task T, with LET interval marked in yellow produce
an output that is not consumed by any reader job of T,y and T;1. The
writing of these jobs is suppressed such that they only write to the local
variable named local, which is indicated by the white boxes. The local
variable has a lifetime equal to the execution time of the writer job. The
visualization of buffers is inspired by figuresin [13].

362 |

3.12

3.13

3.14

3.15

3.16

4.1

List of Figures

Example of suppressing unnecessary writes in SBP for one writer task
Ty and two reader tasks T; and T),. The suppressing of writes is based
on data age constraints d’ and 4%, which have a duration of 3ms. The
gray boxes represent the LET interval of each task instance. The green
arrow indicates a read access and the red arrow a write access. The
light blue boxes represent the global buffer S used by Ty, T;, and T}, in
different time-intervals. Jobs of writer task T} with LET interval marked
in yellow produce an output that is not consumed by any reader job of
T; and T),. The writing of these jobs is suppressed such that they only
write to the local variable named local, which is indicated by the white
boxes. The local variable has a lifetime equal to the execution time of
the writer job. The visualization of buffers is inspired by figures in [13].

Example of suppressing unnecessary writes in SBP for one writer task
Ty and one reader tasks T;. The suppressing of writes is based on
the data age constraint d;, which has a duration of 3ms. The gray
boxes represent the LET interval of each task instance. The green arrow
indicates a read access and the red arrow a write access. The light blue
boxes represent the global buffer S; used by Ty and T; in different
time-intervals. The second job of the writer task Ty, with LET interval
marked in yellow, is suppressed considering the data age constraint
d.. The job writes during execution on the local variable named local,
which is indicated by the white boxes. The suppressing of the write
does not decrease the number of buffers. The local variable has a lifetime
equal to the execution time of the writer job. The dashed white boxes
represent the LET intervals of the first task instances of the next HP
interval. The red line between the first and the second buffer element of
S3 indicates the buffer initialization at the start of the next HP interval.
The visualization of buffers is inspired by figuresin [13].

Shared memory capacity of the Unbuffered, PTP, SBP-G and SBP-L
models for (a) Chassis and (b) EMS applications.

Stack memory capacity of the Unbuffered, PTP, SBP-G and SBP-L mod-
els for (a) Chassis and (b) EMS applications.

Buffering utilization of PTP-WSP, PTP-WOSP, SBP-G and SBP-L for
(a) Chassis and (b) EMS models. The dotted lines represent the linear
regression. The utilization shows the total buffering load of 6 processor
COTES. . v vttt i e e e e

Task execution order in FPS influenced by activation times of LET jobs.
Priority ordering is TP > TF > T;. The red arrows indicate the absolute
deadlines of jobs. The gray and green boxes indicate the start delays

82

and the execution of jobs, respectively. 120

List of Figures

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Validity of Task Attributes. The gray and green boxes indicate the start
delays and the execution of jobs, respectively.

Value and dataflow determinism in PTP for coinciding LET intervals. .

Example of task activation and context-switching. Tasks T7 and T, have
respective periods 5ms and 10 ms. The timer interrupt I}, is triggered
at times Oms, 5ms, and 10ms. The context-switching occurs before
and after execution of the timer interrupt. The timing information is:
wcet; = 1ms, weety = 2.5ms, weet}, = 1ms, 0v,s = 0vy = 0.5ms. The
actual activation of jobs, indicated by the red arrows, occurs during
the execution of the timer interrupt. The activation jitter of every job
is the time distance between occurrence of the black and red arrows.
The white and light blue boxes in the I’ indicate the ov.s and ovy,
respectively. The green boxes indicate the execution of tasks and the
dark blue boxes the execution time of I;.. The green boxes and the gray
boxes indicate the preemption and start delays, respectively.

Schedule Synthesis Workflow and Methodology.

Examples of activation blocks created by activation of LET jobs exe-
cuting on the same core. The dark blue boxes indicate the execution
time of the timer interrupt. The white boxes indicate the time of the
context switch and the light blue boxes indicate the duration of the
terminate operation. The green boxes indicate the execution time of
jobs. The back and red arrows pointing up indicate the planned and
the actual release of jobs, respectively. The red arrows pointing down
indicate the absolute deadline of jobs. The start and preemption delays
are indicated by the gray and green pattern-filled boxes, respectively. .

Examples of communication blocks. The dark blue boxes indicate the
execution time of the timer interrupt. The white boxes indicate the time
of the context-switching and the light blue boxes indicate the duration
of the terminate operation. The green boxes indicate the execution time
of jobs. The back and red arrows pointing up indicate the planned and
the actual release of jobs, respectively. The red arrows pointing down
indicate the absolute deadline of jobs. The start and preemption delays
are indicated by the gray and green pattern-filled boxes, respectively. .

Scheduling parameters jobs | ZS] and]ZE] of LET tasks TiS and TZ.E, respec-

tively. . . . o

TTS scheduling parameters of job J; ; of computation task T; € tz,. . . .

| 363

124

127

128

132

133

138

145

364 |

4.10

411

4.12

4.13

4.14

4.15

4.16

4.17

List of Figures

Example of TTS synthesis considering preemption overheads. Job J; ;
has as direct left neighbor the communication block ccy. Jobs Ji; and
Jp,4 do not have direct left neighbors and they require a context-switch
operation before their start times. Job Jj, r has Ji, as direct left neighbor
and it does not require a context-switch at its start time. Job J;; is
preempted by all the other jobs and by communication block ccy, ;. The
dark green boxes indicate the execution of jobs. The light green and
gray boxes indicate the preemption and start delays, respectively. . . . 151

Invalid preemption points for computation jobs. The dark green and
gray box indicate the execution time and the start delay of job J;j,
respectively. 152

Scheduling of LET End tasks with equal priorities. The dark green
and gray boxes indicate the execution time and the start delay of jobs,
respectively. L 153

Fixed-priority schedule verification parameters of job J; ; of computa-
tion task T;. The time difference between the release time r; ; and the
start time st; ; defines the start delay std; ;, depicted by the gray box. The
time duration of communication block cc}, ; defines the preemption
delay pt; ;, marked by the light green box. The dark green box indicates

the execution of J; ;. Reprinted from [15].. 160

Shifting the execution of a communication block cc} after terminate
operation of a job J; ; finishes the execution. The dark green and light
green boxes indicate the execution time and the preemption delay of
job Jij, respectively.o o 162

Delay of job’s execution due to priority ordering and non-preemptive
section of the terminate operation. The gray boxes show the start delay
intervals and the dark green boxes the execution of jobs. 165

Preemption of job’s execution and of terminate operation. The gray
boxes show the start delay intervals and the dark green boxes the
execution of jobs. The light green boxes show the preemption time of jobs.167

An FPS schedule considering start and preemption delays. Priorities
are 7 > 71; > 7p > 7. The gray boxes show the start delay intervals
and the dark green boxes the execution of jobs. The light green boxes
show the preemption time of jobs. The red highlighted boxes indicate
the underutilized time interval. 170

List of Figures | 365

4.18 Example of start and preemption delays caused by higher-priority tasks
and by communication blocks of the PTP protocol. The gray boxes
show the start delay intervals and the dark green boxes the execution
of jobs. The light green boxes show the preemption time of jobs. 173

419 Benchmark 1 - Synchronous (LET = Period). Schedule feasibility of TTS
and FPS for applications that apply PTP and SBP protocols to integrate
LETsemantics.. 179

4.20 Benchmark 2 - Asynchronous (LET < Period). Schedule feasibility of TTS
and FPS for applications that apply PTP and SBP protocols to integrate
LET semantics.. 181

4.21 Feasibility ratio of TTS and FPS for applications that apply PTP and SBP
protocols to integrate LET semantics. The results with higher Feasible
ratio in TTS than in FPS are marked by the circles colored in orange. . 182

4.22 A schedule snapshot of a SBP model with a feasible schedule in TTS
but infeasible schedule in FPS. The snapshot is taken in TA Tool Suite
[163]. . . . e 183

4.23 Benchmark 1 - Synchronous (LET = Period). The Relative Difference
(%) of the preemption number of TTS and FPS schedule synthesis
algorithms for the optimal found schedule. 185

4.24 Benchmark 2 - Asynchronous (LET < Period). The Relative Difference
(%) of the preemption number of TTS and FPS schedule synthesis
algorithms for the optimal found schedule. 186

4.25 Benchmarkl - Synchronous (LET = Period). The run-time performance of
TTS and FPS schedule synthesis algorithms to provide the first feasible
schedule. The gray horizontal line shows the bound of the reasonable
amount of time 0of 3.600s. Lo L L 188

4.26 Benchmark 2 - Asynchronous (LET < Period). The run-time performance
of TTS and FPS schedule synthesis algorithms to provide the first feasible
schedule. 188

4.27 Benchmarkl - Synchronous (LET = Period). The run-time comparison of
TTS and FPS schedule synthesis algorithms for the first feasible schedule.
Bars notated as FPS > TTS indicate that FPS requires more time to
tind a first feasible schedule than TTS and bars notated as TTS > FPS
indicate the opposite. Lo Lo o 190

366 |

List of Figures

4.28 Benchmark2 - Asynchronous (LET < Period). The run-time comparison

51

52

53

54

55

of TTS and FPS schedule synthesis algorithms for the first feasible sched-
ule. Bars notated as FPS > TTS indicate that FPS requires more time to
tind a first feasible schedule than TTS and bars notated as TTS > FPS
indicate the opposite. oo oo

Integration of LET into the AUTomotive Open System ARchitecture (AU-
TOSAR) Software Architecture

Synchronization of LET intervals in AUTOSAR systems. The LET
interval is associated with a computation task. The release time of a
LET interval corresponds to the release time of the computation task.
In (a), the dataflow is defined assuming zero activation jitters of the
computation task, i.e., LET interval. In (b), activation jitters occur

during execution of tasks on target, which violates the expected dataflow.198

Abstraction of the Antilock Braking System (ABS) components. The
INPUT and OUTPUT software compositions contain the SWCs that
process sensor and actuator data, respectively. The light blue boxes
represent the main application SWCs that implement the functionalities
of the Antilock Braking System (ABS). Three main outputs are provided
to the actuator: the brake pressure, brake light activation, and throttle
request. The arrows marked with red, yellow, green, and light blue
indicate that the variables consumed by the SWCs must have the same
data age, i.e., received and computed based on the same sensor data
and of the same sampling time. The stop watch icon with the time in
ms indicates the periodic activation of runnables inside the SWCs and
compositions. In the OUTPUT composition, sending brake pressure
and throttle request outputs is enabled by runnables activated every
5ms, and sending of brake light by runnables activated each 10ms. . .

The dataflow between LET intervals of the ABS. The highlighted gray,
blue, yellow, and purple boxes indicate the occurrences of LET intervals
involved in the dataflow for the brake light activation, throttle request,
and brake pressure calculation functionalities. The pattern filled gray
and blue boxes indicate occurrences of LET intervals not involved in
the highlighted dataflow. The dataflow of the brake pressure calculation
functionality is marked by the red arrows connecting the respective LET
intervals. The dataflow of the brake light activation and throttle request
are marked by yellow and blue arrows, respectively.

The maximal activation jitter betweencores.

201

204

List of Figures | 367

5.6 Event chain definition for the brake pressure calculation functionality. The
blue dashed line represents the event chain of the dataflow between
LET intervals illustrated by the white boxes. 207

6.1 System-Level Determinism. 214

List of Tables

List of Tables

1.1

2.1

3.1

3.2

3.3

34

3.5

4.1

4.2

4.3

Overview of contributions targeted in each chapter.

Qualitative comparison given in [38, 39] of time-triggered and event-
triggered scheduling approaches. Legend: satisfied (v), partially
satisfied (o), or unsatisfied (X).

Qualitative comparison of buffering mechanisms. Legend: satisfied
(V), partially satisfied (o), unsatisfied (X), unknown (?), Global (G),
Local (L), orMixed (M). i

Parameters of tasks. The EMS models have a hyper-period of 1s and
the Chassis models have a hyper-period of 10ms.

Parameters of dataelements.

Modified Engine Management System (EMS) parameters (hyper-period
of 1s). The Priority attribute defines the priority of the task. The Core
attribute contains the index of the core in which a task is mapped to
execute. Utilization attribute defines the computationload.

Results of EMS model. The global memory size is the memory capacity
for global data elements including buffers. The stack memory size is
the memory capacity for index variables.

Qualitative comparison of approaches for TTS synthesis problem. Leg-
end: satisfied (v'), partially satisfied (o), unsatisfied (X), or unknown
(?), TS (Time-Slicing) or TB (Time-Budgeting), ST (Schedulability Tests),
Simulated Annealing (SA), SIM (Simulation).

Qualitative comparison of approaches for the FPS synthesis problem.
Legend: satisfied (v'), partially satisfied (o), unsatisfied (X), or un-
known (?), TS (Time-Slicing), TB (Time-Budgeting), SA (Simulated
Annealing), GA (Genetic Algorithm), SIM (Simulation), UC (Unschedu-
lability Core).

Configuration of the bufferingload.

| 369

98

370 | List of Tables
44 Run-timesforoverheads., 177
4.5 Summary of Relative Difference (%) of the number of preemptions. . . 187
4.6 Benchmarkl - Synchronous (LET = Period). The run-time of TTS and FPS

schedule synthesis algorithms to provide the optimal found schedule. 191
4.7 Benchmark2 - Asynchronous (LET < Period). The run-time of TTS and

FPS schedule synthesis algorithms to provide the optimal found sched-

ule. .. 191
5.1 Task activation and synchronization run-time overheads. 206
5.2 The event chain duration of the dataflow between LET intervals. . . . 208
A.1 Results of the global buffer size for EMSmodels. 217
A.2 Results of the global buffer size for Chassis models. 219
A.3 Results of the local buffer size for EMSmodels. 221
A.4 Results of the local buffer size for Chassis models. 223
A.5 Results of the buffering overhead of PTP-WSP in EMS models. 225
A.6 Results of the buffering overhead of PTP-WOSP in EMS models. 227
A.7 Results of the buffering overhead of SBP-G in EMS models. 229
A.8 Results of the buffering overhead of SBP-L in EMS models. 230
A9 Results of the buffering overhead of PTP-WSP in Chassis models. 232
A.10 Results of the buffering overhead of PTP-WOSP in Chassis models. . . . 234
A.11 Results of the buffering overhead of SBP-G in Chassis models. 236
A.12 Results of the buffering overhead of SBP-L in Chassis models. 238
A.13 Results for Benchmark 1-SBP. 240
A.14 Results for Benchmark 1-PTP. 279
A.15 Results for Benchmark2-SBP. 302

A.16 Results for Benchmark 2 -PTP. 328

List of Algorithms | 371

List of Algorithms

1 Example implementationof PTP. 61
2 Example of programming stylesinSBP. 70
3 Static Buffering Protocol (SBP). L. 71

4 Searching for a free buffer element to assign to a writer job J; ;. A buffer
element is assigned to a job J; ; if it is not used by any reader or writer
task and if it does not store an output that is consumed by any future
reader job. The prev is reassigned if there are no reader jobs that can read

thevalueof prev. 74
5 Schedule synthesis of LET Startjobsin TIS 139
6 Schedule synthesis of LET End jobsin TTS 142
7 Part 1. Schedule synthesis of LET End jobsin FPS 157

8 Part 2. Schedule synthesis of LET End jobsinFPS 158

	Introduction
	Motivation
	Objectives and Assumptions
	Contributions
	Outline

	Fundamentals
	Embedded Real-Time Systems
	Hardware Architecture
	Software Architecture
	Real-Time Scheduling

	AUTomotive Open System ARchitecture
	Layered Software Architecture
	Communication Paradigms

	Deterministic Multi-Core Systems
	Multi-Core Effects
	Timing and Dataflow Determinism
	The Logical Execution Time (LET)

	Inter-Task Communication Design
	Introduction
	Related Work and Problem Analysis
	Data Stability and Integrity
	Temporal Determinism
	Summary of Related Work

	Point-to-Point Protocol (PTP)
	Overview
	Consistency of Data Synchronizations
	Jitters of Data Synchronizations
	Run-time Overheads

	Static Buffering Protocol (SBP)
	Overview
	Buffering Algorithm
	Buffer Size
	Memory Optimizations
	Run-time Overheads

	Evaluation
	Synthetic Benchmarks
	Industrial Case Study
	Conclusions

	Scheduling Design
	Introduction
	Related Work and Problem Analysis
	Time-Triggered Scheduling
	Fixed-Priority Scheduling

	System Representation
	Application Model
	Overheads Model

	Schedule Synthesis Approach
	Methodology
	Start and Preemption Delays

	Time-Triggered Schedule Synthesis
	Scheduling of Communication Tasks
	Scheduling of Computation Tasks

	Fixed-Priority Schedule Synthesis
	Scheduling of Communication Tasks
	Scheduling of Computation Tasks

	Evaluation
	Configurations
	Feasibility
	Resource Optimization
	Performance
	Conclusions

	Realization in AUTOSAR Systems
	Integration in Software Architecture
	Methodology
	Determinism of LET

	Case Study: Antilock Braking System (ABS)
	Configurations
	Results
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Evaluation of Inter-Task Communication Design
	Evaluation of Scheduling Design

	References
	Acronyms
	List of Figures
	List of Tables
	List of Algorithms

